20 datasets found
  1. a

    Population Density GIS

    • hub.arcgis.com
    • data-sccphd.opendata.arcgis.com
    Updated Aug 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2022). Population Density GIS [Dataset]. https://hub.arcgis.com/datasets/ea6103fd5a8d461ea4305a7b26334aae
    Explore at:
    Dataset updated
    Aug 24, 2022
    Dataset authored and provided by
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Table contains total population and population density summarized at county, city, zip code, and census tract level. Population density is defined as number of people residing per square mile of area. Data are presented for zip codes (ZCTAs) fully within the county. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B01001; data accessed on April 11, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (String): Geography IDNAME (String): Name of geographyt_pop (Numeric): Total populationpop_density (Numeric): Area in square milesarea (Numeric): Population density

  2. Population 2021 (all geographies, statewide)

    • opendata.atlantaregional.com
    Updated Mar 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Population 2021 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/e6d7f80e712544b5a06b47047ca6d02a
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  3. Urban Areas

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (USCB) (Point of Contact) (2025). Urban Areas [Dataset]. https://catalog.data.gov/dataset/urban-areas2
    Explore at:
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Urban Areas dataset was compiled on May 31, 2023 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the urban footprint. There are 2,645 Urban Areas (UAs) in this data release with either a minimum population of 5,000 or a housing unit count of 2,000 units. Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529088

  4. Data from: Urban-rural continuum

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea Cattaneo; Andy Nelson; Theresa McMenomy (2023). Urban-rural continuum [Dataset]. http://doi.org/10.6084/m9.figshare.12579572.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Andrea Cattaneo; Andy Nelson; Theresa McMenomy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The urban–rural continuum classifies the global population, allocating rural populations around differently-sized cities. The classification is based on four dimensions: population distribution, population density, urban center location, and travel time to urban centers, all of which can be mapped globally and consistently and then aggregated as administrative unit statistics.Using spatial data, we matched all rural locations to their urban center of reference based on the time needed to reach these urban centers. A hierarchy of urban centers by population size (largest to smallest) is used to determine which center is the point of “reference” for a given rural location: proximity to a larger center “dominates” over a smaller one in the same travel time category. This was done for 7 urban categories and then aggregated, for presentation purposes, into “large cities” (over 1 million people), “intermediate cities” (250,000 –1 million), and “small cities and towns” (20,000–250,000).Finally, to reflect the diversity of population density across the urban–rural continuum, we distinguished between high-density rural areas with over 1,500 inhabitants per km2 and lower density areas. Unlike traditional functional area approaches, our approach does not define urban catchment areas by using thresholds, such as proportion of people commuting; instead, these emerge endogenously from our urban hierarchy and by calculating the shortest travel time.Urban-Rural Catchment Areas (URCA).tif is a raster dataset of the 30 urban–rural continuum categories for the urban–rural continuum showing the catchment areas around cities and towns of different sizes. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration. The raster also allows for visualizing a simplified continuum created by grouping the seven urban agglomerations into 4 categories.Urban-Rural Catchment Areas (URCA).tif is in GeoTIFF format, band interleaved with LZW compression, suitable for use in Geographic Information Systems and statistical packages. The data type is byte, with pixel values ranging from 1 to 30. The no data value is 128. It has a spatial resolution of 30 arc seconds, which is approximately 1km at the equator. The spatial reference system (projection) is EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long). The geographic extent is 83.6N - 60S / 180E - 180W. The same tif file is also available as an ESRI ArcMap MapPackage Urban-Rural Catchment Areas.mpkFurther details are in the ReadMe_data_description.docx

  5. d

    Health regions: boundaries and correspondence with census geography, 2013...

    • search.dataone.org
    • borealisdata.ca
    • +1more
    Updated Feb 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2024). Health regions: boundaries and correspondence with census geography, 2013 [Canada] [Excel files, digital mapping files] [Dataset]. http://doi.org/10.5683/SP3/BK4OQT
    Explore at:
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    Area covered
    Canada
    Description

    This issue describes in detail the health region limits as of October 2013 and their correspondence with the 2011 and 2006 Census geography. Health regions are defined by the provinces and represent administrative areas or regions of interest to health authorities. This product contains correspondence files (linking health regions to census geographic codes) and digital boundary files. User documentation provides an overview of health regions, sources, methods, limitations and product description (file format and layout). The 2013 Health Regions: Boundaries and Correspondence with Census Geography reflects the boundaries as of October 2013 and provides the geographic linkage to 2011 and 2006 Censuses. For current Health Regions data, refer to Statistics Canada.

  6. a

    World Population Density Estimate 2016

    • hub.arcgis.com
    Updated Apr 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2018). World Population Density Estimate 2016 [Dataset]. https://hub.arcgis.com/datasets/541be35d25ae4847b7a5e129a7eb246f
    Explore at:
    Dataset updated
    Apr 5, 2018
    Dataset authored and provided by
    ArcGIS StoryMaps
    Area covered
    World,
    Description

    This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us at http://goto.arcgisonline.com/landscape7/World_Population_Density_Estimate_2016.This layer is a global estimate of human population density for 2016. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world. Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster. A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer. Dataset SummaryEach cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers: World Population Estimate 2016: this layer contains estimates of the count of people living within the the area represented by the cell. World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.What can you do with this layer?This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:100 - Rural (3.2% [0.7%] of all people live at this density or lower) 400 - Settled (13.3% [4.1%] of all people live at this density or lower)1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher) Values over 50,000 are likely to be erroneous due to spatial inaccuracies in source boundary dataNote the above class breaks were derived from Esri's 2015 estimate, which have been maintained for the sake of comparison. The 2015 percentages are in gray brackets []. The differences are mostly due to improvements in the model and source data. While improvements in the source data will continue, it is hoped the 2017 estimate will produce percentages that shift less.For analysis, Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the average, highest, or lowest density within those zones.

  7. Forest proximate people – 1km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Forest proximate people – 1km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b4
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 1 kilometer of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

    For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Distributor: Sarah E., Castle

    Data lineage:

    The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 1 kilometer of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 1-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Forest proximate people – 1km cutoff distance (100-m resolution)"

  8. g

    Attraction CBD

    • datahub.gpmarinelitter.org
    Updated Aug 26, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Global Partnership on Marine Litter (2021). Attraction CBD [Dataset]. https://datahub.gpmarinelitter.org/datasets/attraction-cbd
    Explore at:
    Dataset updated
    Aug 26, 2021
    Dataset authored and provided by
    Global Partnership on Marine Litter
    Area covered
    Description

    Population Density : This vector dataset provides the population density by commune in Cambodia, as provided by Cambodian Demographic Census 2008 (Ministry of Planning, National Institute of Statistics). Dataset were provided to Open Development Cambodia (ODC) in vector format by Save Cambodia's Wildlife's Atlas Working Group.Urban Density in Cambodia (2011) : This vector dataset provides the urban density in Cambodia, as given by the United Nations Population Fund (UNFPA). Dataset were provided to Open Development Cambodia (ODC) by Save Cambodia's Wildlife's Atlas Working Group.Population Projections for 2030 in Cambodia (2010) : This dataset provides projected population of 2030, projected annual growth rate in each province in Cambodia, given by National Institute of Statistics and the United Nations. Data were provided to Open Development Cambodia (ODC) in vector format by Save Cambodia's Wildlife's Atlas Working Group.River networks of Cambodia : Vector polyline data of river networks in Cambodia. Attributes include: name of river, name of basin, name of sub-basin, Strahler number.Canals in Cambodia (2008) : This dataset is included geographical locations of canals and types of canal such as earthen, levee and masonry. The data is released by Department of Geography of Ministry of Land Management, Urban Planning, and Construction of Cambodia, and then it is contributed by Office for the Coordination of Humanitarian Affairs (OCHA) and shared on Humanitarian Data Exchange (HDX). ODC's map and data team has collected the data from HDX website in Shapefile format and re-published it on ODC's website.Special economic zone in Cambodia (2006-2019) : This dataset describes the information of special economic zone (SEZ) in Cambodia from 2006 to 2019. The total number of 42 SEZ is recorded. The data was collected from many sources by ODC’s mappers such as the royal gazette of Cambodia's government, and reports of the governmental ministries in hard and soft copies of pdf format. Geographic data is encoded in the WGS 84, Zone 48 North coordinate reference system.Road and railway networks in Cambodia (2012- 2019) : Road networks are produced by Open Street Map. ODC's map and data team extracted the data in vector format. Moreover, the polyline data of railway​ given by Save Cambodia's Wildlife's Atlas Working Group in Cambodia for two statuses such as existing, proposed new lines in Cambodia.Forest cover in Cambodia (2015-2018) : This forest cover is extracted from the Forest Monitoring System (https://rlcms-servir.adpc.net/en/forest-monitor/) which is developed by SERVIR-Mekong and the Global Land Analysis and Discovery Lab (GLAD) from University of Maryland. The definition of forest for this dataset is the tree canopy greater than 10% with height more than 5 meters.Schools in flood-prone area 2013 (information 2012-2014) : This dataset is created by clipping between Cambodia flood-prone areas in 2013 dataset and Basic information of school dataset to identify schools are under the flood extend in 2013. The basic information of school contains the spatial location of school, the attribute information in 2014, and total enrollment in 2012.Basic map of Cambodia (2014) : These datasets contain three different types of administrative boundary levels: provincial, district and commune which were contributed by Office for the Coordination of Humanitarian Affairs (OCHA) to Humanitarian Data Exchange (HDX). The datasets were obtained from the Department of Geography of Ministry of Land Management, Urban Planning and Construction (MLMUPC) in 2008 and then unofficially updated in 2014 by referring to Sub-decrees on administrative modifications. Most Recent Changes: New province added (Tbong Khmum), with underlying districts and communes.Land cover in Cambodia (2012- 2016) : The land cover is extracted from the Regional Land Cover Monitoring System (https://rlcms-servir.adpc.net/en/landcover/) which is developed by SERVIR-Mekong. The primitives are calculated from remote sensing indices which were made from yearly Landsat surface reflectance composites. The training data were collected by combining field information with high-resolution satellite imagery.Cropland in Cambodia : This dataset contains information of cropland and location of croplands in Cambodia which was downloaded from World Food Programme GeoNode (WFPGeoNode) using data in 2013 from​ the Department of Land and Geography of the Ministry of Land Management, Urban Planning and Construction.Community Fisheries Map for Cambodia (2011) : This dataset provides 2011 geographic boundaries, size and the number of villages covered by each community fishery for which coordinates are available in Cambodia, as given by the Fisheries Administration. For those community fisheries sites without coordinates, locations are given as the center points of communes and metrics are taken from the Commune Database of 2011. Geographic data is encoded in the WGS 84 coordinate reference system. Data were provided to ODC in vector format by Save Cambodia's Wildlife's Atlas Working Group.Digital Elevation Model (DEM 12.5 m) in 2010 : This raster dataset provides the Digital Elevation Model in the world. Dataset were provided to ASF Data Search Vertex by EarthData. This dataset has high resolution terrain at 12.5 meter. Alaska Satellite Facility (ASF) : making remote-sensing data accessible. ASF operates the NASA archive of synthetic aperture radar (SAR) data from a variety of satellites and aircraft, providing these data and associated specialty support services to researchers in support of NASA’s Earth Science Data and Information System (ESDIS) project.Function Area : This dataset are produced by Open Street Map. The data extracted the data in vector format (point feature).Tourism area (Museum, Attraction) : This dataset are produced by Open Street Map. The data extracted the data in vector format (point feature).Entity : Royal Government of Cambodia, Ministry of Planning, National Institute of Statistics; Cambodian Demographic Census 2008. Phnom Penh, 2008; Save Cambodia's Wildlife; In Atlas of Cambodia: maps on socio-economic development and environment;Time period : 2006-2018Frequency of update : Always up-to-dateGeo-coverage() : NationalGeo-coverage: National() : Cambodia

  9. 2020 Census Tracts

    • catalog.data.gov
    • data.oregon.gov
    • +3more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (2025). 2020 Census Tracts [Dataset]. https://catalog.data.gov/dataset/census-tracts
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    This data layer is an element of the Oregon GIS Framework. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  10. Medical Service Study Areas

    • healthdata.gov
    • data.ca.gov
    • +3more
    application/rdfxml +5
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chhs.data.ca.gov (2025). Medical Service Study Areas [Dataset]. https://healthdata.gov/State/Medical-Service-Study-Areas/nvx2-hzzm
    Explore at:
    csv, application/rdfxml, application/rssxml, xml, json, tsvAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    chhs.data.ca.gov
    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
  11. Frontier and Remote Area Codes

    • agdatacommons.nal.usda.gov
    • gimi9.com
    • +4more
    bin
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Economic Research Service (2025). Frontier and Remote Area Codes [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Frontier_and_Remote_Area_Codes/25696389
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Authors
    USDA Economic Research Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Frontier and Remote Area (FAR) codes provide a statistically-based, nationally-consistent, and adjustable definition of territory in the U.S. characterized by low population density and high geographic remoteness.

    To assist in providing policy-relevant information about conditions in sparsely settled, remote areas of the U.S. to public officials, researchers, and the general public, ERS has developed ZIP-code-level frontier and remote (FAR) area codes. The aim is not to provide a single definition. Instead, it is to meet the demand for a delineation that is both geographically detailed and adjustable within reasonable ranges, in order to be usefully applied in diverse research and policy contexts. This initial set, based on urban-rural data from the 2000 decennial census, provides four separate FAR definition levels, ranging from one that is relatively inclusive (18 million FAR residents) to one that is more restrictive (4.8 million FAR residents).This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: State and ZIP code level tables For complete information, please visit https://data.gov.

  12. g

    BTS, National Metropolitain Statistical Areas (MSA's), USA, 2007

    • geocommons.com
    Updated May 19, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). BTS, National Metropolitain Statistical Areas (MSA's), USA, 2007 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    May 19, 2008
    Dataset provided by
    Bureau of Transportation Statistics National Transportation Atlas Database
    data
    Description

    The United States MSA Boundaries data set contains the boundaries for metropolitan statistical areas in the United States. The data set contains information on location, identification, and size. The database includes metropolitan boundaries within all 50 states, the District of Columbia, and Puerto Rico. The general concept of a metropolitan area (MA) is one of a large population nucleus, together with adjacent communities that have a high degree of economic and social integration with that nucleus. Some MAs are defined around two or more nuclei. Each MA must contain either a place with a minimum population of 50,000 or a U.S. Census Bureau-defined urbanized area and a total MA population of at least 100,000 (75,000 in New England). An MA contains one or more central counties. An MA also may include one or more outlying counties that have close economic and social relationships with the central county. An outlying county must have a specified level of commuting to the central counties and also must meet certain standards regarding metropolitan character, such as population density, urban population, and population growth. In New England, MAs consist of groupings of cities and towns rather than whole counties. The territory, population, and housing units in MAs are referred to as "metropolitan." The metropolitan category is subdivided into "inside central city" and "outside central city." The territory, population, and housing units located outside territory designated "metropolitan" are referred to as "non-metropolitan." The metropolitan and non-metropolitan classification cuts across the other hierarchies; for example, generally there are both urban and rural territory within both metropolitan and non-metropolitan areas.

  13. K

    NZ Populated Places - Polygons

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Jun 16, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Scott (2011). NZ Populated Places - Polygons [Dataset]. https://koordinates.com/layer/3658-nz-populated-places-polygons/
    Explore at:
    kml, csv, dwg, mapinfo tab, pdf, geodatabase, shapefile, mapinfo mif, geopackage / sqliteAvailable download formats
    Dataset updated
    Jun 16, 2011
    Authors
    Peter Scott
    Area covered
    Description

    ps-places-metadata-v1.01

    SUMMARY

    This dataset comprises a pair of layers, (points and polys) which attempt to better locate "populated places" in NZ. Populated places are defined here as settled areas, either urban or rural where densitys of around 20 persons per hectare exist, and something is able to be seen from the air.

    RATIONALE

    The only liberally licensed placename dataset is currently LINZ geographic placenames, which has the following drawbacks: - coordinates are not place centers but left most label on 260 series map - the attributes are outdated

    METHODOLOGY

    This dataset necessarily involves cleaving the linz placenames set into two, those places that are poplulated, and those unpopulated. Work was carried out in four steps. First placenames were shortlisted according to the following criterion: - all places that rated at least POPL in the linz geographic places layer, ie POPL, METR or TOWN or USAT were adopted. - Then many additional points were added from a statnz meshblock density analysis.
    - Finally remaining points were added from a check against linz residential polys, and zenbu poi clusters.

    Spelling is broadly as per linz placenames, but there are differences for no particular reason. Instances of LINZ all upper case have been converted to sentance case. Some places not presently in the linz dataset are included in this set, usually new places, or those otherwise unnamed. They appear with no linz id, and are not authoritative, in some cases just wild guesses.

    Density was derived from the 06 meshblock boundarys (level 2, geometry fixed), multipart conversion, merging in 06 usually resident MB population then using the formula pop/area*10000. An initial urban/rural threshold level of 0.6 persons per hectare was used.

    Step two was to trace the approx extent of each populated place. The main purpose of this step was to determine the relative area of each place, and to create an intersection with meshblocks for population. Step 3 involved determining the political center of each place, broadly defined as the commercial center.

    Tracing was carried out at 1:9000 for small places, and 1:18000 for large places using either bing or google satellite views. No attempt was made to relate to actual town 'boundarys'. For example large parks or raceways on the urban fringe were not generally included. Outlying industrial areas were included somewhat erratically depending on their connection to urban areas.

    Step 3 involved determining the centers of each place. Points were overlaid over the following layers by way of a base reference:

    a. original linz placenames b. OSM nz-locations points layer c. zenbu pois, latest set as of 5/4/11 d. zenbu AllSuburbsRegions dataset (a heavily hand modified) LINZ BDE extract derived dataset courtesy Zenbu. e. LINZ road-centerlines, sealed and highway f. LINZ residential areas, g. LINZ building-locations and building footprints h. Olivier and Co nz-urban-north and south

    Therefore in practice, sources c and e, form the effective basis of the point coordinates in this dataset. Be aware that e, f and g are referenced to the LINZ topo data, while c and d are likely referenced to whatever roading dataset google possesses. As such minor discrepencys may occur when moving from one to the other.

    Regardless of the above, this place centers dataset was created using the following criteria, in order of priority:

    • attempts to represent the present (2011) subjective 'center' of each place as defined by its commercial/retail center ie. mainstreets where they exist, any kind of central retail cluster, even a single shop in very small places.
    • the coordinate is almost always at the junction of two or more roads.
    • most of the time the coordinate is at or near the centroid of the poi cluster
    • failing any significant retail presence, the coordinate tends to be placed near the main road junction to the community.
    • when the above criteria fail to yield a definitive answer, the final criteria involves the centroids of: . the urban polygons . the clusters of building footprints/locations.

    To be clear the coordinates are manually produced by eye without any kind of computation. As such the points are placed approximately perhaps plus or minus 10m, but given that the roads layers are not that flash, no attempt was made to actually snap the coordinates to the road junctions themselves.

    The final step involved merging in population from SNZ meshblocks (merge+sum by location) of popl polys). Be aware that due to the inconsistent way that meshblocks are defined this will result in inaccurate populations, particular small places will collect population from their surrounding area. In any case the population will generally always overestimate by including meshblocks that just nicked the place poly. Also there are a couple of dozen cases of overlapping meshblocks between two place polys and these will double count. Which i have so far made no attempt to fix.

    Merged in also tla and regions from SNZ shapes, a few of the original linz atrributes, and lastly grading the size of urban areas according to SNZ 'urban areas" criteria. Ie: class codes:

    1. Not used.
    2. main urban area 30K+
    3. secondary urban area 10k-30K
    4. minor urban area 1k-10k
    5. rural center 300-1K
    6. village -300

    Note that while this terminology is shared with SNZ the actual places differ owing to different decisions being made about where one area ends an another starts, and what constiutes a suburb or satellite. I expect some discussion around this issue. For example i have included tinwald and washdyke as part of ashburton and timaru, but not richmond or waikawa as part of nelson and picton. Im open to discussion on these.

    No attempt has or will likely ever be made to locate the entire LOC and SBRB data subsets. We will just have to wait for NZFS to release what is thought to be an authoritative set.

    PROJECTION

    Shapefiles are all nztm. Orig data from SNZ and LINZ was all sourced in nztm, via koordinates, or SNZ. Satellite tracings were in spherical mercator/wgs84 and converted to nztm by Qgis. Zenbu POIS were also similarly converted.

    ATTRIBUTES

    Shapefile: Points id : integer unique to dataset name : name of popl place, string class : urban area size as above. integer tcode : SNZ tla code, integer rcode : SNZ region code, 1-16, integer area : area of poly place features, integer in square meters. pop : 2006 usually resident popluation, being the sum of meshblocks that intersect the place poly features. Integer lid : linz geog places id desc_code : linz geog places place type code

    Shapefile: Polygons gid : integer unique to dataset, shared by points and polys name : name of popl place, string, where spelling conflicts occur points wins area : place poly area, m2 Integer

    LICENSE

    Clarification about the minorly derived nature of LINZ and google data needs to be sought. But pending these copyright complications, the actual points data is essentially an original work, released as public domain. I retain no copyright, nor any responsibility for data accuracy, either as is, or regardless of any changes that are subsequently made to it.

    Peter Scott 16/6/2011

    v1.01 minor spelling and grammar edits 17/6/11

  14. Market Saturation & Utilization State-County

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Sep 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2025). Market Saturation & Utilization State-County [Dataset]. https://catalog.data.gov/dataset/market-saturation-utilization-state-county-8c2ec
    Explore at:
    Dataset updated
    Sep 17, 2025
    Dataset provided by
    Centers for Medicare & Medicaid Services
    Description

    The Market Saturation and Utilization State-County dataset provides monitoring of market saturation as a means to help prevent potential fraud, waste, and abuse (FWA). Market saturation, in the present context, refers to the density of providers of a particular service within a defined geographic area relative to the number of beneficiaries receiving that service in the area. The data can be used to reveal the degree to which use of a service is related to the number of providers servicing a geographic region. There are also a number of secondary research uses for these data, but one objective of making these data public is to assist health care providers in making informed decisions about their service locations and the beneficiary population they serve. The interactive dataset can be filtered and analyzed on the site or downloaded in Excel format.

  15. Market Saturation & Utilization Core-Based Statistical Areas

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2025). Market Saturation & Utilization Core-Based Statistical Areas [Dataset]. https://catalog.data.gov/dataset/market-saturation-utilization-core-based-statistical-areas-9b494
    Explore at:
    Dataset updated
    Sep 17, 2025
    Dataset provided by
    Centers for Medicare & Medicaid Services
    Description

    The Market Saturation and Utilization Core-Based Statistical Areas (CBSA) dataset provides monitoring of market saturation as a means to help prevent potential fraud, waste, and abuse (FWA). CBSAs are geographical delineations that are Census Bureau-defined urban clusters of at least 10,000 people. Market saturation, in the present context, refers to the density of providers of a particular service within a defined geographic area relative to the number of beneficiaries receiving that service in the area. The data can be used to reveal the degree to which use of a service is related to the number of providers servicing a geographic region. There are also a number of secondary research uses for these data, but one objective of making these data public is to assist health care providers in making informed decisions about their service locations and the beneficiary population they serve. The interactive dataset can be filtered and analyzed on the site or downloaded in Excel format.

  16. Urban Rural 2025

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). Urban Rural 2025 [Dataset]. https://datafinder.stats.govt.nz/layer/120965-urban-rural-2025/
    Explore at:
    kml, mapinfo tab, geodatabase, shapefile, pdf, mapinfo mif, geopackage / sqlite, dwg, csvAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Refer to the 'Current Geographic Boundaries Table' layer for a list of all current geographies and recent updates.

    This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 689 UR areas, including 195 urban areas and 402 rural settlements.

    Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.

    The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.

    Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.

    Urban areas

    Urban areas are statistically defined areas with no administrative or legal basis. They are characterised by high population density with many built environment features where people and buildings are located close together for residential, cultural, productive, trade and social purposes.

    Urban areas are delineated using the following criteria. They:

    form a contiguous cluster of one or more SA2s,

    contain an estimated resident population of more than 1,000 people and usually have a population density of more than 400 residents or 200 address points per square kilometre,

    have a high coverage of built physical structures and artificial landscapes such as:

    • residential dwellings and apartments,
    • commercial structures, such as factories, office complexes, and shopping centres,
    • transport and communication facilities, such as airports, ports and port facilities, railway stations, bus stations and similar transport hubs, and communications infrastructure,
    • medical, education, and community facilities,
    • tourist attractions and accommodation facilities,
    • waste disposal and sewerage facilities,
    • cemeteries,
    • sports and recreation facilities, such as stadiums, golf courses, racecourses, showgrounds, and fitness centres,
    • green spaces, such as community parks, gardens, and reserves,

    have strong economic ties where people gather together to work, and for social, cultural, and recreational interaction,

    have planned development within the next 5–8 years.

    Urban boundaries are independent of local government and other administrative boundaries. However, the Richmond urban area, which is mainly in the Tasman District, is the only urban area that crosses territorial authority boundaries

    Rural areas

    Rural areas are classified as rural settlements or other rural.

    Rural settlements

    Rural settlements are statistically defined areas with no administrative or legal basis. A rural settlement is a cluster of residential dwellings about a place that usually contains at least one community or public building.

    Rural settlements are delineated using the following criteria. They:

    form a contiguous cluster of one or more SA1s,

    contain an estimated resident population of 200–1,000, or at least 40 residential dwellings,

    represent a reasonably compact area or have a visible centre of population with a population density of at least 200 residents per square kilometre or 100 address points per square kilometre,

    contain at least one community or public building, such as a church, school, or shop.

    To reach the target SA2 population size of more than 1,000 residents, rural settlements are usually included with other rural SA1s to form an SA2. In some instances, the settlement and the SA2 have the same name, for example, Kirwee rural settlement is part of the Kirwee SA2.

    Some rural settlements whose populations are just under 1,000 are a single SA2. Creating separate SA2s for these rural settlements allows for easy reclassification to urban areas if their populations grow beyond 1,000.

    Other rural

    Other rural areas are the mainland areas and islands located outside urban areas or rural settlements. Other rural areas include land used for agriculture and forestry, conservation areas, and regional and national parks. Other rural areas are defined by territorial authority.

    Water

    Bodies of water are classified separately, using the land/water demarcation classification described in the Statistical standard for meshblock. These water areas are not named and are defined by territorial authority or regional council.

    The water classes include:

    inland water – non-contiguous, defined by territorial authority,

    inlets (which also includes tidal areas and harbours) – non-contiguous, defined by territorial authority,

    oceanic – non-contiguous, defined by regional council.

    To minimise suppression of population data, separate meshblocks have been created for marinas. These meshblocks are attached to adjacent land in the UR geography.

    Non-digitised

    The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.

    6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.

    UR numbering and naming

    Each urban area and rural settlement is a single geographic entity with a name and a numeric code.

    Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.

    Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.

    Urban rural indicator (IUR)

    The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:

    • major urban area – 100,000 or more residents,
    • large urban area – 30,000–99,999 residents,
    • medium urban area – 10,000–29,999 residents,
    • small urban area – 1,000–9,999 residents.

    This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2025 Census population count moves them up or down a category.

    The indicators, by name, with their codes in brackets, are:

    urban area – major urban (11), large urban (12), medium urban (13), small urban (14),

    rural area – rural settlement (21), rural other (22),

    water – inland water (31), inlet (32), oceanic (33).

    High definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007.

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  17. Market Saturation & Utilization

    • detroitdata.org
    csv, pdf
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2025). Market Saturation & Utilization [Dataset]. https://detroitdata.org/dataset/market-saturation-utilization
    Explore at:
    csv(241875), pdf(114532), pdf(179739)Available download formats
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Centers for Medicare & Medicaid Services
    Description

    The Market Saturation and Utilization State-County dataset provides monitoring of market saturation. Market saturation, in the present context, refers to the density of providers of a particular service within a defined geographic area relative to the number of beneficiaries receiving that service in the area. The data can be used to reveal the degree to which use of a service is related to the number of providers servicing a geographic region. There are also a number of secondary research uses for these data, but one objective of making these data public is to assist health care providers in making informed decisions about their service locations and the beneficiary population they serve.

  18. c

    Pedestrian accessibility indicators by country

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Dec 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sustainable Development Solutions Network (2022). Pedestrian accessibility indicators by country [Dataset]. https://www.cacgeoportal.com/datasets/sdsn::pedestrian-accessibility-indicators-by-country
    Explore at:
    Dataset updated
    Dec 6, 2022
    Dataset authored and provided by
    Sustainable Development Solutions Network
    Area covered
    Description

    This is an assessment of pedestrian accessibility in the world's main urban centers, aggregated at country level. Indicators include the average walking time to different categories of destinations, as well as the proportion of inhabitants that can access each category of services within a 15 minutes walk. The data is produced and maintained by the UN's Sustainable Development Solutions Network (SDSN) as part of the SDG Transformation Center.Pedestrian accessibility is the extent to which the built environment supports walking access to destinations of interest. This measure is particularly useful for assessing spatial justice in cities, usually represented by underpriviledged communities which are pushed to live in deteriorated urban areas receiving a minor share of public investments and thus low levels of accessibility. Monitoring spatial indicators of pedestrian accessibility helps planners and policymakers evaluate the impacts of urban design and transport interventions and guides targeted interventions towards creating healthy, sustainable cities, and achieving the United Nations (UN) Sustainable Development Goals (SDGs).Data SourcesTwo main sources of data are behind this study. OpenStreetMap is used to collect data on pedestrian infrastructure and geographically allocated places of interest (POI): hospitals, schools, supermarkets, restaurants, schools, etc. Pedestrian infrastructure networks are returned by the OpenStreetMap API as networks of nodes and edges, where each node represents a street intersection and each edge represents a segment of road with walkable features. Data on population density for every city is retrieved from the European Commission's 2020 Global Human Settlement Layer (GHSL) . This data is retrieved in the form of a grid of 100m by 100m squares and their associated population density values covering the entire world.Geographical extentThe geographical extent of a particular city or region often varies according to different authorities and interpretations. Novel projects, such as the Global Human Settlements (GHS) Urban Centres Database (UCDB), seek to establish a consistent, shared geographic definition of “urban centres” globally. This study does not consider municipal boundaries for defining city borders. Rather, it considers "Functional Urban Areas" as defined by the OECD and the European Commission . The boundaries of Functional Urban Areas consider urbanization factors such as commuting flows and population density, and are less arbitrary than municipal boundaries. For this reason, cities presented here may have a different (and often bigger) shape expected.Accessibility analysisTo measure accessibility to services for each city, we perform a network analysis on the pedestrian street networks and POIs data to quantify and map accessibility to urban infrastructure at the street intersection level. For each 100m cell from the population grid data, the resulting "walking time" reflects the time that a person residing inside that cell would have to walk for, using the existing pedestrian infrastructure, to reach the first amenity from a given category of services. The analysis was performed using geopandas and pandana python packages. These calculations were performed for all cities where at least one POI could be identified for each square kilometer. This threshold is applied in order to enforce representativity and accuracy. These scores were then be generalized for each country, by taking the population weighted average of the accessibility score for each point in the population grid. Countries where less than 40% of the urban population is represented after applying the aforementioned thresholds were excluded from the final dataset.Code for generating these results is publicly available at: https://github.com/sdsna/sdg-accessibilityThis methodology was expanded from Nicoletti, L., Verma, T., Sirenko, M. (2022). Disadvantaged Communities Have Lower Access to Urban Infrastructure. Environment and Planning B: Urban Analytics and City Science, 0(0) and the CityAccessMap project.

  19. Community Development Block Grant Grantee Areas

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Jan 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2019). Community Development Block Grant Grantee Areas [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/fedmaps::community-development-block-grant-grantee-areas
    Explore at:
    Dataset updated
    Jan 12, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Community Development Block Grant Grantee Areas This National Geospatial Data Asset (NGDA) dataset, shared as a Department of Housing and Urban Development (HUD) feature layer, displays Community Development Block Grant Grantee Areas. Per HUD, “Established in 1974, the Community Development Block Grant (CDBG) Program provides annual grant funding to local and state governments to address a wide range of unique community development needs. HUD determines the amount of each grant by using a formula comprised of several measures of community need, including the extent of poverty, population, housing density, age of housing, and population growth relative to other metropolitan areas.” Denton, TX (Entitlement Grantee - Metropolitan Cities, Central City), Tarrant, TX (Entitlement Grantee - Urban Counties) & Texas Nonentitlement, TX (State Grantee) Data currency: current federal service (Community Development Block Grant Grantee Areas)NGDAID: 81 (HUD Entitlement Grantee Jurisdiction - National Geospatial Data Asset (NGDA))OGC API Features Link: Not availableFor more information: CDBG: Community Development Block Grant ProgramsSupport Documentation: DD CDBG Grantee Areas (Data Dictionary download)For feedback please contact: Esri_US_Federal_Data@esri.com NGDA Data Set This data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the "boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes." For other NGDA Content: Esri Federal Datasets

  20. d

    Areas of Vulnerability, 2016

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Apr 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2018). Areas of Vulnerability, 2016 [Dataset]. https://catalog.data.gov/pt_PT/dataset/areas-of-vulnerability-2016
    Explore at:
    Dataset updated
    Apr 12, 2018
    Dataset provided by
    data.sfgov.org
    Description

    These geographic designations were created to define geographic areas within San Francisco that have a higher density of vulnerable populations. These geographic designations will be used for the Health Care Services Master Plan and DPH's Community Health Needs Assessment. aov_fin - 1 = YES aov_fin - 0 = NO AOV's were defined using 2012-2016 ACS data at the census tract level and the following criteria: 1) Top 1/3rd for < 200% poverty or < 400% poverty & top 1/3rd for persons of color OR 2) Top 1/3rd for < 200% poverty or < 400% poverty & top 1/3rd for youth or seniors (65+) OR 3) Top 1/3rd for < 200% poverty or < 400% poverty & top 1/3rd for 2 other categories (unemployment, high school or less, limited English proficiency persons, linguistically isolated households, or disability) Tracts that had unstable data for an indicator were automatically given zero credit for that indicator. That is why two language variables are included in the bonus group, because there tend to be a high number of tracts with unstable data for language variables.

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Santa Clara County Public Health (2022). Population Density GIS [Dataset]. https://hub.arcgis.com/datasets/ea6103fd5a8d461ea4305a7b26334aae

Population Density GIS

Explore at:
54 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 24, 2022
Dataset authored and provided by
Santa Clara County Public Health
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

Table contains total population and population density summarized at county, city, zip code, and census tract level. Population density is defined as number of people residing per square mile of area. Data are presented for zip codes (ZCTAs) fully within the county. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B01001; data accessed on April 11, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (String): Geography IDNAME (String): Name of geographyt_pop (Numeric): Total populationpop_density (Numeric): Area in square milesarea (Numeric): Population density

Search
Clear search
Close search
Google apps
Main menu