This graph shows the population density in the federal state of New York from 1960 to 2018. In 2018, the population density of New York stood at 414.7 residents per square mile of land area.
Population Numbers By New York City Neighborhood Tabulation Areas The data was collected from Census Bureaus' Decennial data dissemination (SF1). Neighborhood Tabulation Areas (NTAs), are aggregations of census tracts that are subsets of New York City's 55 Public Use Microdata Areas (PUMAs). Primarily due to these constraints, NTA boundaries and their associated names may not definitively represent neighborhoods. This report shows change in population from 2000 to 2010 for each NTA. Compiled by the Population Division – New York City Department of City Planning.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the New York City metro area from 1950 to 2025. United Nations population projections are also included through the year 2035.
This dataset contains the New York City Population By Community Districts.The community boards of the New York City government are the appointed advisory groups of the community districts of the five boroughs. There are currently 59 community districts, including twelve in Manhattan, twelve in the Bronx, eighteen in Brooklyn, fourteen in Queens, and three in Staten Island.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Table of Census Demographics represented at the NYC City Council district level
The 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Table of Census Demographics represented at the NTA level. NTAs are aggregations of census tracts that are subsets of New York City's 55 Public Use Micro data Areas (PUMAs)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We investigated genetic diversity and structure of urban white-footed mouse, Peromyscus leucopus, populations in New York City (NYC) using variation at 18 microsatellite loci. White-footed mice are "urban adapters" that occur at higher population densities as habitat fragments are reduced in area, but have a limited ability to disperse through urbanized areas. We hypothesized that this combination of traits has produced substantial genetic structure but minimal loss of genetic variation over the last century in NYC. Allelic diversity and heterozygosity in fourteen NYC populations were high, and nearly all of our NYC study sites contained genetically distinct populations of white-footed mice as measured by pairwise FST, assignment tests, and Bayesian clustering analyses performed by Structure and BAPS. Analysis of molecular variance revealed that genetic differences between populations separated by a few km are more significant than differences between prehistorically isolated landmasses (i.e. Bronx, Queens, and Manhattan). Allele size permutation tests and lack of isolation-by-distance indicated that mutation and migration are less important than drift as explanations for structure in urban, fragmented P. leucopus populations. Peromyscus often exhibit little genetic structure over even regional scales, prompting us to conclude that urbanization is a particularly potent driver of genetic differentiation compared to natural fragmentation.
In 2023, the metropolitan area of New York-Newark-Jersey City had the biggest population in the United States. Based on annual estimates from the census, the metropolitan area had around 19.5 million inhabitants, which was a slight decrease from the previous year. The Los Angeles and Chicago metro areas rounded out the top three. What is a metropolitan statistical area? In general, a metropolitan statistical area (MSA) is a core urbanized area with a population of at least 50,000 inhabitants – the smallest MSA is Carson City, with an estimated population of nearly 56,000. The urban area is made bigger by adjacent communities that are socially and economically linked to the center. MSAs are particularly helpful in tracking demographic change over time in large communities and allow officials to see where the largest pockets of inhabitants are in the country. How many MSAs are in the United States? There were 421 metropolitan statistical areas across the U.S. as of July 2021. The largest city in each MSA is designated the principal city and will be the first name in the title. An additional two cities can be added to the title, and these will be listed in population order based on the most recent census. So, in the example of New York-Newark-Jersey City, New York has the highest population, while Jersey City has the lowest. The U.S. Census Bureau conducts an official population count every ten years, and the new count is expected to be announced by the end of 2030.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Urbanization exposes species to novel environments and selection pressures that may change morphological traits within a population. We investigated how the shape and size of crania and mandibles changed over time within a population of brown rats (Rattus norvegicus) living in Manhattan, New York, USA, a highly urbanized environment. We measured 3D landmarks on the cranium and mandible of 62 adult individuals sampled in the 1890s and 2010s. Static allometry explained approximately 22% of shape variation in crania and mandible datasets, while time accounted for approximately 14% of variation. We did not observe significant changes in skull size through time or between the sexes. Estimating the P-matrix revealed that directional selection explained temporal change of the crania but not the mandible. Specifically, rats from the 2010s had longer noses and shorter upper molar tooth rows, traits identified as adaptive to colder environments and higher quality or softer diets, respectively. Our results highlight the continual evolution to selection pressures. We acknowledge that urban selection pressures impacting cranial shape likely began in Europe prior to the introduction of rats to Manhattan. Yet, our study period spanned changes in intensity of artificial lighting, human population density, and human diet, thereby altering various aspects of rat ecology and hence pressures on the skull.
New York was the most populous state in the union in the year 1900. It had the largest white population, for both native born and foreign born persons, and together these groups made up over 7.1 million of New York's 7.2 million inhabitants at this time. The United States' industrial centers to the north and northeast were one of the most important economic draws during this period, and states in these regions had the largest foreign born white populations. Ethnic minorities Immigration into the agricultural southern states was much lower than the north, and these states had the largest Black populations due to the legacy of slavery - this balance would begin to shift in the following decades as a large share of the Black population migrated to urban centers to the north during the Great Migration. The Japanese and Chinese populations at this time were more concentrated in the West, as these states were the most common point of entry for Asians into the country. The states with the largest Native American populations were to the west and southwest, due to the legacy of forced displacement - this included the Indian Territory, an unorganized and independent territory assigned to the Native American population in the early 1800s, although this was incorporated into Oklahoma when it was admitted into the union in 1907. Additionally, non-taxpaying Native Americans were historically omitted from the U.S. Census, as they usually lived in separate communities and could not vote or hold office - more of an effort was made to count all Native Americans from 1890 onward, although there are likely inaccuracies in the figures given here. Changing distribution Internal migration in the 20th century greatly changed population distribution across the country, with California and Florida now ranking among the three most populous states in the U.S. today, while they were outside the top 20 in 1900. The growth of Western states' populations was largely due to the wave of internal migration during the Great Depression, where unemployment in the east saw many emigrate to "newer" states in search of opportunity, as well as significant immigration from Latin America (especially Mexico) and Asia since the mid-1900s.
This statistic presents the American states with highest ratio of millionaire households per capita in 2020. In that year, New Jersey had the highest ratio of millionaire households per capita in the country, with 9.76 percent of households holding over one million U.S. dollars in assets.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This graph shows the population density in the federal state of New York from 1960 to 2018. In 2018, the population density of New York stood at 414.7 residents per square mile of land area.