Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. India data available from WorldPop here.
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 5th Edition (1978 to 1995) of the National Atlas of Canada is a map that shows distribution of Indians and Inuit using several types of symbols to represent population in 1976.
Population density in the Malaprabha (K4) sub-basin area. The dataset, calculated as number of people per hectare, is derived from the WorldPop datasets (https://www.worldpop.org/)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1: Basic Information of India. Table S1. List of Indian States and Union Territories. Figure S1. Map of Indian States and Union Territories. Figure S2. Map of Indian population density. Figure S3. Averaged annual rainfall map of India (2013-2016). The red arrows are monsoon move directions during summer.
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM_popmap10adj_v2.tif = Vietnam (VNM) population count map for 2010 (popmap10) adjusted to match UN national estimates (adj), version 2 (v2). DATE OF PRODUCTION: January 2013
In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
This data package includes spatial environmental and social layers for Shivamogga District, Karnataka, India that were considered as potential predictors of patterns in human cases of Kyasanur Forest Disease (KFD). KFD is a fatal tick-borne viral haemorrhagic disease of humans, that is spreading across degraded forest ecosystems in India. The layers encompass a range of fifteen metrics of topography, land use and land use change, livestock and human population density and public health resources for Shivamogga District across 1km and 2km study grids. These spatial proxies for risk factors for KFD that had been jointly identified between cross-sectoral stakeholders and researchers through a co-production approach. Shivamogga District is the District longest affected by KFD in south India. The layers are distributed as 1km and 2km GeoTiffs in Albers equal area conic projection. For KFD, spatial models incorporating these layers identified characteristics of forest-plantation landscapes at higher risk for human KFD. These layers will be useful for modelling spatial patterns in other environmentally sensitive infectious diseases and biodiversity within the district.
Methods Processing of environmental predictors of Kyasanur Forest Disease distribution
This file details the sources and processing of environmental predictors offered to the statistical analysis in the paper. All processing was performed in the raster package [1] of the R program [2] unless otherwise specified, with function names as specified below.
Topography predictors
Elevation data was extracted in tiles from Shuttle Radar Topography Mission data version 4 [3] an original resolution of 0.000833 degrees Latitude and Longitude resolution (approximately 90m by 90m grid cells). Tiles were mosaicked across the study region using the merge function. A slope value for each pixel was calculated (in degrees) using the terrain function of the raster package, and a focal window of 3 by 3 cells. Both the resulting elevation and slope rasters were cropped to the administrative boundaries of the Shivamogga District (raster package: crop function) and re-projected to an equal area projection (Albers equal area conic projection) using the projectRaster function (method=”bilinear”). Mean elevation and slope values were then calculated across the study 1km and 2km grid cells, using the aggregate function to average values across the appropriate number of ~90m grid cells and then the resample function to align the resulting grid to the study grids.
Landscape predictors
Metrics of the current availability (and fragmentation) of forest, agricultural and built-up land use types as well as that of water-bodies were extracted from the MonkeyFeverRisk Land Use Land Cover map of Shimoga. The latter was produced from classification of earth observation data from 2016 to 2018 using the methods described in the Supplementary information S3 file of the paper linked to this dataset. The LULC map had an original grid square resolution of 0.000269 degrees Latitude and Longitude resolution (or 30m x 28m grid cells) and nine different LULC classes. It was cropped to the administrative boundaries of the Shimoga District (raster package: crop function) and re-projected to the equal area projection (Albers equal area conic projection) using the projectRaster function (method=”ngb” for categorical data). The agriculture and fallow land classes were combined before landscape analysis (due to the difficulty of separating them accurately in the classification process).
An algorithm was developed in R to identify which of the pixels in the LULC map coincided with each 1km and 2km grid cell of the study area. The ClassStat function of the SDM Tools package [4] was used to calculate the proportional area of each 1km or 2km grid cell landscape that was made up of a particular land class, as well patch density and edge density metrics for the forest classes as indicators of fragmentation and forest-agriculture interface habitat respectively (Fig. S2B). The proportional area values (pi) of the n different forest classes (wet evergreen forest, moist deciduous forest, dry deciduous forest and plantation) were used to calculate an index of forest type diversity per grid cell as follows, after Shannon & Weaver (1949) [5]:
H'= -1npi(lognpi)
Metrics of longer term forest changes in Shimoga since 2000 were derived from a global product by Hansen et al. (2013) [6] available at a spatial resolution of 1 arc-second per pixel, (~ 30 meters per pixel at equator). Forest loss during the period 2000–2014, is defined as a stand-replacement disturbance, or a change from a forest to non-forest state, encoded as either 1 (loss) or 0 (no loss). Forest gain during the period 2000–2012, is defined as a non-forest to forest change entirely within the study period, encoded as either 1 (gain) or 0 (no gain).These layers were again cropped to the administrative boundaries of the Shimoga District (raster package: crop function) and re-projected to an equal area projection (Albers equal area conic projection) using the projectRaster function (method=”ngb”) in R. An algorithm was developed in R to identify which of the pixels in the loss and gain rasters coincided with each 1km and 2km grid cell of the study area. The ClassStat function of the SDM Tools package [4] was used to calculate the proportional area of each 1km or 2km grid cell that was made up of loss pixels or gain pixels. Forest gain and loss are very highly correlated (r=0.986) and occur in similar places in the landscape (Fig. S2C). Forest loss was a much more common transition than a forest gain affecting 1.2% of land pixels rather than 0.16% of land pixels for forest gain.
To assess how forest loss or gain from a global product like Hansen et al. (2013) should be interpreted locally in south India, we analysed how the loss and gain pixels from Hansen et al. 2013 coincided with classes in the MonkeyFeverRisk LULC map (by extracting the value of the LULC map for the centroids of loss or gain pixels).
The distribution of loss and gain pixels across forest classes from the MonkeyFeverRisk LULC map is shown in Table 1. Locations categorised as a loss by Hansen et al. were most commonly classified currently as plantation, followed by moist evergreen forest, followed by
moist or dry deciduous forest by the MonkeyFeverRisk LULC map. The pattern was similar for the gain pixels. Since not all forest loss pixels were non-forest in the current day and not all forest gain pixels were forest in the current day, the precise meaning of the Hansen et al. (2013) forest loss layer was unclear for south India, though we expect that it is at least indicative of areas where the forest has undergone a larger degree of change since 2000.
Table 1: Percentage of loss (n= 108398) and gain (n= 14646) land pixels from the global Hansen et al. (2013) product that fall into different forest classes according to the MonkeyFeverRisk LULC map
Land use class
Gain
Loss
moist evergreen
30.4
26.1
moist deciduous
6.5
16.2
dry deciduous
3.0
9.7
plantation
46.2
37.2
Non-forest classes
14.0
10.9
Host and public health predictors
Livestock host density data, namely buffalo and indigenous cattle densities in units of total head per village were obtained from Department of Animal Husbandry, Dairying and Fisheries, Government of India Census from 2011 at village level. These were linked to village boundaries from the Survey of India using the village census codes in R. The village areas were calculated from the spatial polygons dataframe of villages using the rgeos package in R, so that the total head per village metrics could be convert into an areal density of buffalo and indigenous cattle per km and then rasterized at 1km and 2km using the rasterize function of the raster package.
The human population size and public health metrics were obtained from the Government of India Population Census 2011. The human population size (census field TOT_P) was again linked to the spatial polygon village boundaries using the census village code (census field VCT_2011) and converted to an areal metric of population density per km and rasterized at 1km and 2km as above. The number of medics per head of population was derived by summing all doctors and para-medicals “in position” across all types of health centres, clinics and dispensaries per village and dividing by the total population of the village (TOT_P) and then linked to village boundaries and rasterized as above. The proximity to health centres was a categorical variable derived from the “Primary.Health.Centre..Numbers” field, where 1 = Primary Health Centre (PHC) within village boundary, 2 = PHC within 5km of village, 3=PHC within 5-10km of village, 4= PHC further than 10km from village. It was linked to village boundaries and rasterized as above.
The resulting raster layers for all predictors were saved in GeoTiff format.
References
Robert J. Hijmans (2017). raster: Geographic Data Analysis and Modeling. R package version 2.6-7. https://CRAN.R-project.org/package=raster
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.URL https://www.R-project.org/
Jarvis, A., Reuter, I., Nelson, A., Guevara, E. Hole-filled SRTM for the globe Version 4. 2008.
VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., & Storlie, C. (2014). SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises. R
Goal 11: Make cities and human settlements inclusive, safe, resilient, and sustainableHalf of humanity – 3.5 billion people – lives in cities today. By 2030, almost 60% of the world’s population will live in urban areas.828 million people live in slums today and the number keeps rising.The world’s cities occupy just 2% of the Earth’s land, but account for 60 – 80% of energy consumption and 75% of carbon emissions. Rapid urbanization is exerting pressure on fresh water supplies, sewage, the living environment, and public health. But the high density of cities can bring efficiency gains and technological innovation while reducing resource and energy consumption.Cities have the potential to either dissipate the distribution of energy or optimise their efficiency by reducing energy consumption and adopting green – energy systems. For instance, Rizhao, China has turned itself into a solar – powered city; in its central districts, 99% of households already use solar water heaters.68% of India’s total population lives in rural areas (2013-14).By 2030, India is expected to be home to 6 mega-cities with populations above 10 million. Currently 17% of India’s urban population lives in slums.This map layer is offered by Esri India, for ArcGIS Online subscribers, If you have any questions or comments, please let us know via content@esri.in.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We provide county and state-level flood exposure data, precipitation data, and individual flood maps for each SAR frames to understand flood exposure from the 2019 Flood of Iran at the country level utilizing 673 Sentinel-1 Synthetic Aperture Radar intensity images spanning January to February. A complete description of the method used to obtain probabilistic flood maps and exposure can be found in Sherpa and Shirzaei (2020) but is briefly stated below.
We applied a Bayesian framework to SAR intensity images to calculate the probability of a SAR pixel being flooded (Giustarini et al., 2016; Sherpa et al., 2020), for which a likelihood probability density function was estimated, thereby providing a continuous value between 0 and 1 as a probabilistic flood map. To obtain an estimate of likelihood, an image segmentation scheme using the fast marching algorithm (FMA) is implemented (Sethian, 1999). The percent area exposed to flooding is estimated as the pixel area's multiplication with its flooding probability for pixels located within each county or state divided by the county or state area. The population exposure is calculated by multiplying each county or state's percent area exposure values with their population, assuming a uniform population distribution.
Anyone wishing to use this dataset should cite Sherpa and Shrizaei (2022) and this dataset. Please also contact and contact Sonam Futi Sherpa at sfsherpa@vt.edu for any questions with details of their work, so that we may offer guidance in regard to the best usage of our produced dataset.
Sherpa, S. F., & Shirzaei, M. (2021). Country‐wide flood exposure analysis using Sentinel‐1 synthetic aperture radar data: Case study of 2019 Iran flood. Journal of Flood Risk Management, 15(1), e12770. https://doi.org/10.1111/jfr3.12770
Additional references:
Sherpa, S. F., Shirzaei, M., Ojha, C., Werth, S., & Hostache, R. (2020). Probabilistic mapping of august 2018 flood of Kerala, India, using space-borne synthetic aperture radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 896-913. 10.1109/JSTARS.2020.2970337 Giustarini, Laura, Renaud Hostache, Dmitri Kavetski, Marco Chini, Giovanni Corato, Stefan Schlaffer, and Patrick Matgen. "Probabilistic flood mapping using synthetic aperture radar data." IEEE Transactions on Geoscience and Remote Sensing 54, no. 12 (2016): 6958-6969. Sethian, J. A. (1999). Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science (Vol. 3). Cambridge university press.
There were over one million registered Indians in Canada as of December 2020. The region with the largest Indian population was Ontario, with 222 thousand, followed by Manitoba, which counted 164 thousand Indians. The regions with the smallest Indian populations were Yukon, and Northwest Territories.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Full journal article published hereDesignating Airsheds in India for Urban and Regional Air Quality Managementhttps://doi.org/10.3390/air2030015
[Summary presentation download]
Datasets used for proposing India's 15 regional airsheds for air quality management are the following
PM2.5 DatasetsRaw data source: https://sites.wustl.edu/acag/datasets/surface-pm2-5
Gridded 0.1 degree resolution source apportionment results from WUSTL's global model simulationsFile: india_data_pm25_wustl_source_cont_0p1deg.xlsxAggregated Source definitions used in this presentation
DUST = Anthropogenic dust = AFCID
WINDUST = Wind erosion (dust storms) = WDUST
WASTE = Waste burning = WST
RESI = All commercial and residential cooking, lighting, and heating = RCOC + RCOO + RCORbiofuel + RCORcoal + RCORother
TRANS = All transport (excluding aviation) = ROAD + NRTR + SHP
POWER = Energy generation = ENEcoal + ENEother
INDUS = All industries and product use = INDcoal + INDother + SLV
BIOB = Biomass burning, including forest fires and agricultural waste burning = GFEDoburn + GFEDagburn
AGR = Agricultural activities (excluding agricultural waste burning) = AGR
OTHER = All others = OTHER
Gridded 0.1 degree resolution, reanalysis data from WUSTL's global model simulationsFile: india_data_pm25_wustl_reanalysis_0p1deg.xlsxTime period: 1998 to 2022, annual averages
Gridded 0.1 degree achive for monthly averages from WUSTL's global model simulationsFile: Download-44MB
Population DatasetsRaw data source: https://landscan.ornl.gov
Gridded 0.1 degree resolution population density dataFile: india_data_population_2021_0p1deg.xlsx
GIS databases used in this study
ESRI shapefile of 0.1 x 0.1 degree mesh file for the Indian Subcontinent covering longitudes from 67E to 99E and latitudes from 7N to 39NFile: india_gis_grids-0.1x0.1deg.rar
ESRI shapefile of India administrative level 2 data - 28 states and 8 union territories (as of December 2023)File: india_gis_states28+8_2023.rar
ESRI shapefile of India administrative level 3 data - 755 districts (as of December 2023): district23 and states23 codes are re-designed for emissions and pollution mapping and data tracking purposesFile: India_gis_districts755_2023.rar (original source: https://projects.datameet.org/maps)
ESRI shapefile of India's Agro-Climatic zonesFile: india_gis_agroclimatic_zones.rar (original source: https://karnataka.data.gov.in/resource/boundaries-agro-climatic-regions
ESRI shapefile of India's meteorological sub-divisionsFile: india_gis_meteo_subdivisions.rar (original source: https://mausam.imd.gov.in)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Bangladesh is a South Asian country located at the crossroads of the Indochina and Indo-Himalayan subregions, making it a country of rich faunal diversity. Bangladesh's high population density paired with rapid habitat alteration leaving only 6% of its natural habitats threatens its faunal diversity. Over 1,455 bat species live on earth, providing immense ecological services to maintain biodiversity. The paucity of bat research in Bangladesh and the lack of comprehensive work has led us to set the goal of checking how many species are present in Bangladesh, and the possibility of bat species yet to have occurred. Here we compiled species occurrence data on the bats of Bangladesh and states in neighboring countries (India – states are West Bengal, Sikkim, Meghalaya, Assam, Tripura, Mizoram; Myanmar – states are Chin, Rakhine) from the museums (American Museum of Natural History, Smithsonian National Museum of Natural History, Natural History Museum at United Kingdom, Field Museum of Natural History, Hungarian Natural History Museum, and Royal Ontario Museum), Global Biodiversity Information Facility, and literature, and constructed distribution maps for each species. The maps depicted both the fine-scale and coarse-scale distribution of the species. We confirmed 31 species are occurring in Bangladesh – among them, 22 species are confirmed with the voucher specimen, 15 species are associated with the preserved tissues, and one is confirmed with the morphometric data and key characteristics. Based on the species occurrence in the states of India and Myanmar, along with the habitat preference, an additional 83 species are yet to have occurred in Bangladesh. Among them, 38 species are categorized as Highly Probable, 33 species are Probable, and 10 species are Possible. We recommend bat surveys are urgent in Bangladesh using all complementary capture techniques that will contribute to voucher specimen collections and confirm the presence of bats. In addition, echolocation calls of bats can help establish call libraries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Values without references indicate that have been determined for this article (see S1 Fig).
The earliest point where scientists can make reasonable estimates for the population of global regions is around 10,000 years before the Common Era (or 12,000 years ago). Estimates suggest that Asia has consistently been the most populated continent, and the least populated continent has generally been Oceania (although it was more heavily populated than areas such as North America in very early years). Population growth was very slow, but an increase can be observed between most of the given time periods. There were, however, dips in population due to pandemics, the most notable of these being the impact of plague in Eurasia in the 14th century, and the impact of European contact with the indigenous populations of the Americas after 1492, where it took almost four centuries for the population of Latin America to return to its pre-1500 level. The world's population first reached one billion people in 1803, which also coincided with a spike in population growth, due to the onset of the demographic transition. This wave of growth first spread across the most industrially developed countries in the 19th century, and the correlation between demographic development and industrial or economic maturity continued until today, with Africa being the final major region to begin its transition in the late-1900s.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. India data available from WorldPop here.