Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Pakistan data available from WorldPop here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The territories of Pakistan and India are mostly covered by the non-political blocks AS42 through AS50, going roughly from West to East. Please see the attached map of these non-political boundary blocks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The territories of Pakistan and India are mostly covered by the non-political blocks AS42 through AS50, going roughly from West to East. Please see the attached map of these non-political boundary blocks.
DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM_popmap10adj_v2.tif = Vietnam (VNM) population count map for 2010 (popmap10) adjusted to match UN national estimates (adj), version 2 (v2). DATE OF PRODUCTION: January 2013
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tariff Structure announced by Government of Pakistan.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The raster dataset consists of a 500m score grid for slaughterhouse industry facilities siting, produced under the scope of FAO’s Hand-in-Hand Initiative, Geographical Information Systems - Multicriteria Decision Analysis for value chain infrastructure location.
The analysis is based on goat production intensification potential defined using crop production, livestock production systems, and goat distribution.
The score is achieved by processing sub-model outputs that characterize logistical factors: 1. Supply - Feed, livestock production systems, goat distribution. 2. Demand - Human population density, large cities, urban areas. 3. Infrastructure - Transportation network (accessibility). It consists of an arithmetic weighted sum of normalized grids (0 to 100): ("Crop Production" * 0.2) + ("Human Population Density" * 0.2) + (“Major Cities Accessibility” * 0.2) + (”Goat intensification” * 0.3) + (“Poverty” * 0.1).
Data publication: 2021-10-18
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Dariia Nesterenko
Data lineage:
Major data sources, FAO GIS platform Hand-in-Hand and OpenStreetMap (open data) including the following datasets: 1. Human Population Density 2020 – WorldPop2020 - Estimated total number of people per grid-cell 1km. 2. Mapspam Production – IFPRI's Spatial Production Allocation Model (SPAM) estimates of crop distribution within disaggregated units. 3. GLW Gridded Livestock of the World - Gridded Livestock of the World (GLW 3 and GLW 2) 4. Global Livestock Production Systems v.5 2011. 5. OpenStreetMap. 6. Poverty: VMPI source: UNDP (United Nations Development Programme)
Resource constraints:
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO (CC BY-NC- SA 3.0 IGO)
Online resources:
Zipped raster TIF file for Slaughterhouse Location Score: Goat (Pakistan - ~ 500m)
The research on the vulnerability dataset of disaster bearing bodies in the China Pakistan Economic Corridor (domestic section) is based on multi-source data fusion, and a vulnerability evaluation system covering natural disasters and socio-economic systems has been constructed. This dataset integrates field survey data (infrastructure distribution, population density), satellite remote sensing data (surface deformation monitoring, vegetation coverage), and statistical yearbook data (GDP, disaster prevention investment), and forms a multidimensional vulnerability database through GIS spatial analysis, remote sensing interpretation, and data standardization processing. The research team has developed a three-dimensional evaluation index system that includes exposure, sensitivity, and adaptability. The exposure index covers physical elements such as the proportion of geological hazard prone areas and the density of transportation arteries; Sensitivity indicators involve socio-economic factors such as ecological vulnerability index and poverty incidence rate; The indicators of adaptability include emergency response capability, medical resource density, and other elements of disaster prevention and reduction capability. To improve the evaluation accuracy, the traditional vulnerability index model was improved by introducing the random forest algorithm for weight optimization, and the stability of the model was verified through Monte Carlo simulation. The analysis results show that there is significant spatial heterogeneity in the domestic section of the corridor: high vulnerability areas are concentrated in the Karakoram Pamir geologically active zone, driven by a combination of frequent extreme weather events, insufficient infrastructure disaster resistance standards, and weak regional economic resilience. The future research can be further extended to the high-altitude mountains along the "the Belt and Road". In combination with multi-scale remote sensing monitoring and socio-economic big data, we can deepen the research on the formation mechanism of cross-border disaster risk in the context of climate change, and provide scientific support for building a resilient Silk Road.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Pakistan data available from WorldPop here.