As of 2024, Barbados was the most densely populated country in Latin America and the Caribbean, with approximately 652 people per square kilometer. In that same year, Argentina's population density was estimated at approximately 16.7 people per square kilometer.
Estimated density of people per grid-cell, approximately 1km (0.008333 degrees) resolution. The units are number of people per Km² per pixel, expressed as unit: "ppl/Km²". The mapping approach is Random Forest-based dasymetric redistribution. The WorldPop project was initiated in October 2013 to combine the AfriPop, AsiaPop and AmeriPop population mapping projects. It aims to provide an open access archive of spatial demographic datasets for Central and South America, Africa and Asia to support development, disaster response and health applications. The methods used are designed with full open access and operational application in mind, using transparent, fully documented and peer-reviewed methods to produce easily updatable maps with accompanying metadata and measures of uncertainty. Acknowledgements information at https://www.worldpop.org/acknowledgements
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in American Samoa: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
This map illustrates where infrastructure and population could be potentially impacted by a one meter sea level rise by the year 2100. Examples of infrastructure: airports, education establishments, medical facilities, and buildings. The pattern is shown along coastal areas by both tracts and counties. The sea level rise model comes from the Climate Mapping Resilience and Adaptation (CMRA) portal. As you zoom into the map, you can see the pattern by where human settlement exists. This helps illustrate the pattern by where people live.Airport data: Airports (National) - National Geospatial Data Asset (NGDA) AirportsData can be accessed hereOpenStreetMap Data:BuildingsMedical FacilitiesEducation EstablishmentsPopulation data: ACS Table(s): B01001Data downloaded from: Census Bureau's API for American Community Survey Data can be accessed hereHuman Settlement data:WorldPop Population Density 2000-2020 100mData can be accessed hereAbout the CMRA data:The Climate Mapping Resilience and Adaptation (CMRA) portal provides a variety of information for state, local, and tribal community resilience planning. A key tool in the portal is the CMRA Assessment Tool, which summaries complex, multidimensional raster climate projections for thresholded temperature, precipitation, and sea level rise variables at multiple times and emissions scenarios. This layer provides the geographical summaries. What's included?Census 2019 counties and tracts; 2021 American Indian/Alaska Native/Native Hawaiian areas25 Localized Constructed Analogs (LOCA) data variables (only 16 of 25 are present for Hawaii and territories)Time periods / climate scenarios: historical; RCP 4.5 early-, mid-, and late-century; RCP 8.5 early-, mid-, and late-centuryStatistics: minimum, mean, maximumSeal level rise (CONUS only)Original Layers in Living Atlas:U.S. Climate Thresholds (LOCA)U.S. Sea Level Rise Source Data:Census TIGER/Line dataAmerican Indian, Alaska Native, and Native Hawaiian areasLOCA data (CONUS)LOCA data (Hawaii and territories)Sea level rise
In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population Raster American Samoa 2020 Data Input: Settlement footprint from Facebook's High-Resolution Population Density Maps (https://data.humdata.org/dataset/american-samoa-high-resolution-population-density-maps-demographic-estimates) Population allocated proportionally using 2011 census population counts at enumeration area level. Year Population Growth Rate of 0.23% has been applied to update population up to 2020
The earliest point where scientists can make reasonable estimates for the population of global regions is around 10,000 years before the Common Era (or 12,000 years ago). Estimates suggest that Asia has consistently been the most populated continent, and the least populated continent has generally been Oceania (although it was more heavily populated than areas such as North America in very early years). Population growth was very slow, but an increase can be observed between most of the given time periods. There were, however, dips in population due to pandemics, the most notable of these being the impact of plague in Eurasia in the 14th century, and the impact of European contact with the indigenous populations of the Americas after 1492, where it took almost four centuries for the population of Latin America to return to its pre-1500 level. The world's population first reached one billion people in 1803, which also coincided with a spike in population growth, due to the onset of the demographic transition. This wave of growth first spread across the most industrially developed countries in the 19th century, and the correlation between demographic development and industrial or economic maturity continued until today, with Africa being the final major region to begin its transition in the late-1900s.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These maps represent a modeled distribution of population based on the nominal censuses of the town of Curitiba and adjacent towns. Classification of data is normalized for each category to allow comparison between different periods of time.
This layer shows Population. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the point by Population Density and size of the point by Total Population. The size of the symbol represents the total count of housing units. Population Density was calculated based on the total population and area of land fields, which both came from the U.S. Census Bureau. Formula used for Calculating the Pop Density (B01001_001E/GEO_LAND_AREA_SQ_KM). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2017-2021ACS Table(s): B01001, B09020Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 16, 2023National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.
The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These maps represent a modeled distribution of population based on the nominal censuses of the town of Curitiba and adjacent towns, providing a snapshot of the demographic situation in a specific year. Classification of data is normalized for each year to allow comparison between different categories of data for the same year.
Note: These layers were compiled by Esri's Demographics Team using data from the Census Bureau's American Community Survey. These data sets are not owned by the City of Rochester.Overview of the map/data: This map shows the percentage of the population living below the federal poverty level over the previous 12 months, shown by tract, county, and state boundaries. Estimates are from the 2018 ACS 5-year samples. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer will be updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico.Census tracts with no population are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.
In 2025, the Ile-de-France region, sometimes called the Paris region, was the most populous in France. It is located in the northern part of France, divided into eight departments and crossed by the Seine River. The region contains Paris, its large suburbs, and several rural areas. The total population in metropolitan France was estimated at around ** million inhabitants. In the DOM (Overseas Department), France had more than *** million citizens spread over the islands of Guadeloupe, Martinique, Reunion, Mayotte, and the South American territory of French Guiana. Ile-de-France: the most populous region in France According to the source, more than ** million French citizens lived in the Ile-de-France region. Ile-de-France was followed by Auvergne-Rhône-Alpes and Occitanie region which is in the Southern part of the country. Ile-de-France is not only the most populated region in France, it is also the French region with the highest population density. In 2020, there were ******* residents per square kilometer in Ile-de-France compared to ***** for Auvergne-Rhône-Alpes, the second most populated region in France. More than two million people were living in the city of Paris in 2025. Thus, the metropolitan area outside the city of Paris, called the suburbs or banlieue in French, had more than ten million inhabitants. Ile-de-France concentrates the majority of the country’s economic and political activities. An urban population In 2024, the total population of France amounted to over 68 million. The population in the country has increased since the mid-2000s. As well as the other European countries, France is experiencing urbanization. In 2023, more than ** percent of the French population lived in cities. This phenomenon shapes France’s geography.
This data set consists of 83 digital maps that were produced by the Food and Agriculture Organization of the United Nations (FAO) for the World Bank as part of a Global Farming Systems Study. The maps are distributed through the FAO-UN GeoNetwork Portal to Spatial Data and Information.
As part of the World Bank's review of its rural development strategy, the Bank sought the assistance of FAO in evaluating how farming systems might change and adapt over the next thirty years. Amongst other objectives, the World Bank asked FAO to provide guidance on priorities for investment in food security, poverty reduction, and economic growth, and in particular to identify promising approaches and technologies that will contribute to these goals. The results of the study are summarized in a set of seven documents, comprising six regional reports and a global overview. The global overview, which synthesizes the results of the six regional analyses as well as discussing global trends, cross-cutting issues and possible implementation modalities, presents an overview of the complete study. The global document is supplemented by two case study reports of development issues of importance to farming systems globally.
The six regions studied include:
East Asia Pacific East Europe and Central Asia Latin America and Caribbean Middle East and North Africa South Asia Sub-Saharan Africa
Map coverages for each region include the following:
Average precipitation Average temperature Elevation Irrigation intensity Land cover Length of growing period Livestock stocking density Major environmental constraints Major farming systems NOAA Satellite imagery (shaded relief imagery and ocean floor bathymetry) Permanent crop and arable land Rural population Slope Total population
The map coverages were prepared by FAO based on the following data sources:
Doll, P. and Siebert, S. 1999. A Digital Global Map of Irrigated Areas, Report No A9901, Centre for Environmental Systems Research, University of Kassel, Kassel, Germany.
Environmental Systems Research Institute (ESRI) Data and Maps 1999, Volume 1. World Worldsat Color Shaded Relief Image. Based on 1996 NOAA weather satellite images, with enhanced shaded relief imagery and ocean floor relief data (bathymetry) to provide a land and undersea topographic view. ESRI, Redlands, California, USA.
Food and Agriculture Organization of the United Nations (FAO), Land and Water Development Division (AGL) with the collaboration of the International Institute for Applied Systems Analysis (IIASA). 2000. Global Agro-Ecological Zones Study. FAO, Rome, Italy.
Gomes, R. 1999. Major Environmental Constraints for Agricultural Production Project. Based on FAOCLIM database, ARTEMIS NDVI imagery, and soil and terrain data provided by Soil Resources Management and Conservation Service. FAO-GIS. Food and Agriculture Organization of the United Nations (FAO), Environment and Natural Resources Service, Rome, Italy.
Leemans, R. and Cramer, W. 1991. The IIASA Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness on a Global Terrestrial Grid. Research Report RR-91-18. November 1991. International Institute of Applied Systems Analyses, Laxenburg, pp. 61.
Oak Ridge National Laboratory, LandScan Global Population 1998 Database. Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, USA.
Slingenbergh, J. Livestock Distribution, Production and Diseases: Towards a Global Livestock Atlas. Food and Agriculture Organization of the United Nations (FAO), AGAH, Rome, Italy. (aka Global Livestock Production and Health Atlas (GLiPHA))
U.S. Geological Survey, EROS Data Center. 1996. GTOPO30 Digital Data Set. EDC, Sioux Falls, South Dakota, USA.
3.1.3.15 American Alligator Distribution, Size, Nesting, and Hole Occupancy The American alligator will be monitored using three approaches in the Greater Everglades Wetlands, each to determine if populations are recovering in expected ways as CERP is implemented. Methodologies are described in Rice et al. (2004 in press). The recovery of a healthy range of alligator size classes and condition throughout the system, including increased occupancy on mangrove creeks, will be monitored by surveys at the end of the wet season and throughout the dry season. Eye shine surveys of freshwater wetlands will be supplemented by aerial and ground surveys of coastal creeks during September and throughout the dry season. Alligators will be captured, weighed, and measured in October and March-April. Survey and capture locations will be a combination of fixed and randomly selected routes in regions and cells where landscape patterns and marsh fish populations are monitored. Capture areas and survey areas will not overlap during a given sampling period. Alligator parameters will include the number of alligators per kilometer, size class distribution, and body condition of alligators greater than one meter in length. Habitat parameters will include water level, temperature, salinity, and vegetation type. The return of reproducing alligator populations to the southern marl prairies and mangrove estuaries, while maintaining alligator nesting in Shark River Slough, will be monitored by systematic reconnaissance flight surveys supplemented by aerial surveys and ground checks. Annual systematicreconnaissance flight surveys will be flown throughout Everglades National Park in July. Systematic reconnaissance flight methodology is described above for monitoring wading bird foraging. The number of alligator nests and the number of successful nests will be measured in addition to water level, salinity, and vegetation type. Occupancy rate of alligator holes (with a goal of 75-100 percent occupation) and an increase in the number and distribution of alligator holes in areas of low density will be monitored by mapping alligator holes in combination with occupancy checks. The number and distribution of alligator holes will be mapped every three years in the regions and cells where landscape patterns and fish populations are monitored, using the aerial photography acquired for vegetation mapping. The number of mapped holes occupied by alligators 1.8 meters or longer will be monitored annually in a random sample of holes using helicopter and airboat surveys.
3.1.3.16 American Crocodile Juvenile Growth and Survival American crocodile surveys will be conducted using methodologies described in Mazzotti and Cherkiss (2002). Surveys for crocodile nests will be conducted April through August in Biscayne Bay and Florida Bay from Crandon Park to Shark River. Nests will be monitored through incubation, and hatchlings will be captured, measured, and marked upon emergence. Surveys and captures of juvenile crocodiles will be conducted four times a year in the same areas (early nesting, late nesting, and twice in the winter dry season). All animals will be weighed, measured, sexed, and given an individual mark. Location (using a global positioning system), salinity, and temperature will be recorded at each capture.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data are derived from generalized linear models and model selection techniques using 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents. Models were used to determine the strength of association among a diverse set of biotic and abiotic factors associated with wild pig population dynamics. The models and associated factors were used to predict the potential population density of wild pigs at the 1 km resolution. Predictions were then compared with available population estimates for wild pigs on their native range in North America indicating the predicted densities are within observed values. See Lewis et al (2017) and Lewis et al (2019) for more information.Lewis, Jesse S., Matthew L. Farnsworth, Chris L. Burdett, David M. Theobald, Miranda Gray, and Ryan S. Miller. "Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal." Scientific reports7 (2017): 44152.Lewis, Jesse S., Joseph L. Corn, John J. Mayer, Thomas R. Jordan, Matthew L. Farnsworth, Christopher L. Burdett, Kurt C. VerCauteren, Steven J. Sweeney, and Ryan S. Miller. "Historical, current, and potential population size estimates of invasive wild pigs (Sus scrofa) in the United States." Biological Invasions21, no. 7 (2019): 2373-2384.
This layer shows total population count by sex and age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent and count of the dependent population (ages 65+ and <18). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
https://www.broward.org/Terms/Pages/Default.aspxhttps://www.broward.org/Terms/Pages/Default.aspx
This layer shows Hispanic or Latino origin by specific origin. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the population with Hispanic or Latino origins. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2016-2020ACS Table(s): B03001 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: March 17, 2022The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This layer shows population broken down by race and Hispanic origin. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the predominant race living within an area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B03002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
U.S. Census Bureau 2020 block groups within the City of Seattle with American Community Survey (ACS) 5-year series data of frequently requested topics. Data is pulled from block group tables for the most recent ACS vintage. Seattle neighborhood geography of Council Districts, Comprehensive Plan Growth Areas are also included based on block group assignment.The census block groups have been assigned to a neighborhood based on the distribution of the total population from the 2020 decennial census for the component census blocks. If the majority of the population in the block group were inside the boundaries of the neighborhood, the block group was assigned wholly to that neighborhood.Feature layer created for and used in the Neighborhood Profiles application.The attribute data associated with this map is updated annually to contain the most currently released American Community Survey (ACS) 5-year data and contains estimates and margins of error. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintages: 2023ACS Table(s): Select fields from the tables listed here.Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
As of 2024, Barbados was the most densely populated country in Latin America and the Caribbean, with approximately 652 people per square kilometer. In that same year, Argentina's population density was estimated at approximately 16.7 people per square kilometer.