22 datasets found
  1. e

    South Africa - Population density - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Jul 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). South Africa - Population density - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/south-africa-population-density-2015
    Explore at:
    Dataset updated
    Jul 23, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.

  2. l

    Continent of Africa: High Resolution Population Density Maps

    • kenya.lsc-hubs.org
    • data.amerigeoss.org
    Updated Feb 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Continent of Africa: High Resolution Population Density Maps [Dataset]. https://kenya.lsc-hubs.org/cat/collections/metadata:main/items/meta-population-density
    Explore at:
    Dataset updated
    Feb 5, 2024
    Area covered
    Africa
    Description

    These 28 tiff files represent 2015 population estimates. However, please note that many of the country-level files include 2020 population estimates including: Angola, Benin, Botswana, Burundi, Cameroon, Cabo Verde, Cote d'Ivoire, Djibouti, Eritrea, Eswatini, The Gambia, Ghana, Lesotho, Liberia, Mozambique, Namibia, Sao Tome & Principe, Sierra Leone, South Africa, Togo, Zambia, and Zimbabwe. South Sudan, Sudan, Somalia and Ethiopia are intentionally omitted from this dataset. However, a country-level dataset for Ethiopia can be found at https://data.humdata.org/dataset/ethiopia-high-resolution-population-density-maps-demographic-estimates.

  3. M

    High Resolution Population Density Maps - Africa

    • catalog.midasnetwork.us
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Facebook, High Resolution Population Density Maps - Africa [Dataset]. https://catalog.midasnetwork.us/collection/290
    Explore at:
    Dataset provided by
    MIDAS COORDINATION CENTER
    Authors
    Facebook
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Region, Africa
    Variables measured
    age-stratified, phenotypic sex, population demographic census
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    The dataset is a zip file that contains 28 cloud optimized tiff files that cover the continent of Africa. Each of the 28 files represents a region or area - these are not divided by country. These 28 tiff files represent 2015 population estimates. However, please note that many of the country-level files include 2020 population estimates including: Angola, Benin, Botswana, Burundi, Cameroon, Cabo Verde, Cote d'Ivoire, Djibouti, Eritrea, Eswatini, The Gambia, Ghana, Lesotho, Liberia, Mozambique, Namibia, Sao Tome & Principe, Sierra Leone, South Africa, Togo, Zambia, and Zimbabwe. To create the high-resolution maps, machine learning techniques are used to identify buildings from commercially available satellite images then general population estimates are overlaid based on publicly available census data and other population statistics. The resulting maps are the most detailed and actionable tools available for aid and research organizations.

  4. o

    South Sudan - Population density (2015) - Dataset - openAFRICA

    • open.africa
    Updated Aug 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). South Sudan - Population density (2015) - Dataset - openAFRICA [Dataset]. https://open.africa/dataset/south-sudan-population-density-2015
    Explore at:
    Dataset updated
    Aug 11, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Sudan
    Description

    Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. South Sudan data available from WorldPop here.

  5. f

    South Africa Education Data and Visualisations

    • figshare.com
    • ufs.figshare.com
    png
    Updated Aug 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Herkulaas Combrink; Elizabeth Carr; Katinka de wet; Vukosi Marivate; Benjamin Rosman (2023). South Africa Education Data and Visualisations [Dataset]. http://doi.org/10.38140/ufs.22081058.v4
    Explore at:
    pngAvailable download formats
    Dataset updated
    Aug 15, 2023
    Dataset provided by
    University of the Free State
    Authors
    Herkulaas Combrink; Elizabeth Carr; Katinka de wet; Vukosi Marivate; Benjamin Rosman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    The tabular and visual dataset focuses on South African basic education and provides insights into the distribution of schools and basic population statistics across the country. This tabular and visual data are stratified across different quintiles for each provincial and district boundary. The quintile system is used by the South African government to classify schools based on their level of socio-economic disadvantage, with quintile 1 being the most disadvantaged and quintile 5 being the least disadvantaged. The data was joined by extracting information from the debarment of basic education with StatsSA population census data. Thereafter, all tabular data and geo located data were transformed to maps using GIS software and the Python integrated development environment. The dataset includes information on the number of schools and students in each quintile, as well as the population density in each area. The data is displayed through a combination of charts, maps and tables, allowing for easy analysis and interpretation of the information.

  6. o

    Republic of Korea - Population density (2015) - Dataset - openAFRICA

    • open.africa
    Updated Aug 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Republic of Korea - Population density (2015) - Dataset - openAFRICA [Dataset]. https://open.africa/dataset/south-korea-population-density-2015
    Explore at:
    Dataset updated
    Aug 11, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Korea
    Description

    Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. Republic of Korea data available from WorldPop here.

  7. s

    South Africa 100m Population

    • eprints.soton.ac.uk
    • search.datacite.org
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop, (2023). South Africa 100m Population [Dataset]. http://doi.org/10.5258/SOTON/WP00246
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    South Africa
    Description

    DATASET: Alpha version 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/). REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. DATE OF PRODUCTION: January 2013

  8. e

    South Africa - High Resolution Settlement Layer - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Mar 23, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). South Africa - High Resolution Settlement Layer - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/south-africa-high-resolution-settlement-layer-2015
    Explore at:
    Dataset updated
    Mar 23, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    The High Resolution Settlement Layer (HRSL) provides estimates of human population distribution at a resolution of 1 arc-second (approximately 30m) for the year 2015. The population estimates are based on recent census data and high-resolution (0.5m) satellite imagery from DigitalGlobe. The population grids provide detailed delineation of settlements in both urban and rural areas, which is useful for many research areas—from disaster response and humanitarian planning to the development of communications infrastructure. The settlement extent data were developed by the Connectivity Lab at Facebook using computer vision techniques to classify blocks of optical satellite data as settled (containing buildings) or not. Center for International Earth Science Information Networks (CIESIN) at Earth Institute Columbia University used proportional allocation to distribute population data from subnational census data to the settlement extents. The data-sets contain the population surfaces, metadata, and data quality layers. The population data surfaces are stored as GeoTIFF files for use in remote sensing or geographic information system (GIS) software. The data can also be explored via an interactive map - http://columbia.maps.arcgis.com/apps/View/index.html?appid=ce441db6aa54494cbc6c6cee11b95917 Citation: Facebook Connectivity Lab and Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. High Resolution Settlement Layer (HRSL). Source imagery for HRSL © 2016 DigitalGlobe.

  9. a

    Population Density for Africa in 2000 (people/square km) (Data Basin...

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 28, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    consbio (2011). Population Density for Africa in 2000 (people/square km) (Data Basin Dataset) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/content/9ec46c83ca5c47ebb1a25bd43131b483
    Explore at:
    Dataset updated
    Jan 28, 2011
    Dataset authored and provided by
    consbio
    Area covered
    Description

    This documentation describes the fourth version of a database of administrative units with associated population figures for Africa. The first version was compiled for UNEP's Global Desertification Atlas (UNEP 1992, Deichmann and Eklundh 1991), while the second version represented an update and expansion of this first product (Deichmann 1994, WRI 1995), and the third was another update and expansion (Deichmann 1997).

    This new version for Africa provides considerably more detail: more than 109,000 administrative units (83,000 of which are in South Africa), compared to about 800 in the first, 2,200 in the second version and 4,700 in the third. In addition, for each of these units a population estimate was compiled for 1960, 70, 80, 90 and 2000 which provides an indication of past population dynamics in Africa.

    Citation:Title: Population Density for Africa in 2000, Fourth Edition Credits: Andy Nelson, University of Leeds Publication Date: 2004-10-06 Publisher: UNEP/GRID Sioux Falls, SD, USA Citation: Nelson, Andy, 2004. African Population Database, UNEP GRID Sioux Falls. Retrieved "date of download" from Please cite documentation as follows: Nelson, Andy, 2004. African Population Database Documentation, UNEP GRID Sioux Falls. Retrieved 1/27/2011 from UNEP/GRID Sioux Falls.

    Spatial Resolution: 2.5 km

    This layer package was loaded using Data Basin.Click here to go to the detail page for this layer package in Data Basin, where you can find out more information, such as full metadata, or use it to create a live web map.

  10. f

    Human Population Density (Global - Annual - 1 km)

    • data.apps.fao.org
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Human Population Density (Global - Annual - 1 km) [Dataset]. https://data.apps.fao.org/map/catalog/srv/search?keyword=humans
    Explore at:
    Dataset updated
    Sep 17, 2020
    Description

    Estimated density of people per grid-cell, approximately 1km (0.008333 degrees) resolution. The units are number of people per Km² per pixel, expressed as unit: "ppl/Km²". The mapping approach is Random Forest-based dasymetric redistribution. The WorldPop project was initiated in October 2013 to combine the AfriPop, AsiaPop and AmeriPop population mapping projects. It aims to provide an open access archive of spatial demographic datasets for Central and South America, Africa and Asia to support development, disaster response and health applications. The methods used are designed with full open access and operational application in mind, using transparent, fully documented and peer-reviewed methods to produce easily updatable maps with accompanying metadata and measures of uncertainty. Acknowledgements information at https://www.worldpop.org/acknowledgements

  11. g

    GRID3 South Africa Social Distancing Layers, Version 1.0

    • data.grid3.org
    • africageoportal.com
    • +1more
    Updated Jul 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). GRID3 South Africa Social Distancing Layers, Version 1.0 [Dataset]. https://data.grid3.org/maps/ba42ac44def64a69aa1eb326ad0e740f
    Explore at:
    Dataset updated
    Jul 20, 2021
    Dataset authored and provided by
    WorldPop
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in South Africa. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.

  12. Population in Africa 2025, by selected country

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Population in Africa 2025, by selected country [Dataset]. https://www.statista.com/statistics/1121246/population-in-africa-by-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Africa
    Description

    Nigeria has the largest population in Africa. As of 2025, the country counted over 237.5 million individuals, whereas Ethiopia, which ranked second, has around 135.5 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 118.4 million people. In terms of inhabitants per square kilometer, Nigeria only ranked seventh, while Mauritius had the highest population density on the whole African continent in 2023. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Chad, South Sudan, Somalia, and the Central African Republic, the population increase peaks at over 3.4 percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. African cities are also growing at large rates. Indeed, the continent has three megacities and is expected to add four more by 2050. Furthermore, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria, by 2035.

  13. a

    GRID3 South Africa Social Distancing Layers (Index), Version 1.0

    • africageoportal.com
    • data.grid3.org
    • +3more
    Updated Jul 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2021). GRID3 South Africa Social Distancing Layers (Index), Version 1.0 [Dataset]. https://www.africageoportal.com/datasets/WorldPop::grid3-south-africa-social-distancing-layers-index-version-1-0
    Explore at:
    Dataset updated
    Jul 20, 2021
    Dataset authored and provided by
    WorldPop
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Social distancing is a public health measure intended to reduce infectious disease transmission, by maintaining physical distance between individuals or households. In the context of the COVID-19 pandemic, populations in many countries around the world have been advised to maintain social distance (also referred to as physical distance), with distances of 6 feet or 2 metres commonly advised. Feasibility of social distancing is dependent on the availability of space and the number of people, which varies geographically. In locations where social distancing is difficult, a focus on alternative measures to reduce disease transmission may be needed. To help identify locations where social distancing is difficult, we have developed an ease of social distancing index. By index, we mean a composite measure, intended to highlight variations in ease of social distancing in urban settings, calculated based on the space available around buildings and estimated population density. Index values were calculated for small spatial units (vector polygons), typically bounded by roads, rivers or other features. This dataset provides index values for small spatial units within urban areas in South Africa. Measures of population density were calculated from high-resolution gridded population datasets from WorldPop, and the space available around buildings was calculated using building footprint polygons derived from satellite imagery (Ecopia.AI and Maxar Technologies. 2020). These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development. Project partners included the United Nations Population Fund (UNFPA), Center for International Earth Science Information Network (CIESIN) in the Earth Institute at Columbia University, and the Flowminder Foundation.

  14. Global population density by region 2025

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global population density by region 2025 [Dataset]. https://www.statista.com/statistics/912416/global-population-density-by-region/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    As of 2025, Asia was the most densely populated region of the world, with nearly 156 inhabitants per square kilometer, whereas Oceania's population density was just over five inhabitants per square kilometer.

  15. Distribution of the global population by continent 2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

  16. e

    South Africa - Power Pool Renewable Energy Zones Solar CSP

    • energydata.info
    Updated May 16, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). South Africa - Power Pool Renewable Energy Zones Solar CSP [Dataset]. https://energydata.info/dataset/southern-african-power-pool-renewable-energy-zones-solar-csp
    Explore at:
    Dataset updated
    May 16, 2018
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    This spatial vector dataset shows areas of identified high quality potential for Concentrating Solar Power (CSP) development divided into large contiguous areas called "zones." This dataset shows all zones in the Southern Africa Power Pool (SAPP) region. This is one of many products resulting from a study led by the International Renewable Energy Agency (IRENA) and the Lawrence Berkeley National Laboratory (LBNL) identifying wind and solar renewable energy zones for the Africa Clean Energy Corridor (ACEC). For each zone identified, multiple siting criteria were estimated, including the total and component levelized cost of electricity (LCOE), average capacity factor, distance to nearest grid infrastructure, distance to the nearest load center, average population density. For full documentation of the methods and descriptions of the attributes, please refer to the report and attribute information in the interactive PDF map. They can be found on the irena.org/Publications and mapre.lbl.gov websites. The information provided is meant to inform high-level policy debate (identification of opportunity areas for further prospection, preliminary assessment of technical potentials), or to perform market screening (cross referencing the resource information with policy information). It is suitable for decision-making activities, excluding financial commitments.

  17. Global population 1800-2100, by continent

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  18. s

    South Sudan 100m Population

    • eprints.soton.ac.uk
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop, (2023). South Sudan 100m Population [Dataset]. http://doi.org/10.5258/SOTON/WP00642
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    South Sudan
    Description

    DATASET: Version 4.0 2010 estimates of numbers of people per grid square for 2010, 2015, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/), and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: WorldPop naming convention applied; example SSD_ppp_2010_adj_v4.tif = South Sudan population per pixel (ppp) map for 2010 adjusted to match UN national estimates (adj), dataset version 4 (v4). DATE OF PRODUCTION: Jan 2013 (Updated July 2018) CITATION: WorldPop. 2013. South Sudan 100m Population, Version 4. University of Southampton. DOI: 10.5258/SOTON/WP00642.

  19. f

    Map S1 - Estimating and Mapping the Population at Risk of Sleeping Sickness

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    • +1more
    Updated Oct 25, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruiz-Postigo, José Antonio; Mattioli, Raffaele C.; Franco, José R.; Jannin, Jean G.; Paone, Massimo; Fèvre, Eric M.; Cecchi, Giuliano; Simarro, Pere P.; Diarra, Abdoulaye (2012). Map S1 - Estimating and Mapping the Population at Risk of Sleeping Sickness [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001148671
    Explore at:
    Dataset updated
    Oct 25, 2012
    Authors
    Ruiz-Postigo, José Antonio; Mattioli, Raffaele C.; Franco, José R.; Jannin, Jean G.; Paone, Massimo; Fèvre, Eric M.; Cecchi, Giuliano; Simarro, Pere P.; Diarra, Abdoulaye
    Description

    Maps of distribution of population at risk of human African trypanosomiasis in 21 disease endemic countries, where any level of risk has been identified during the period 2000–2009. Countries are organized on geographical order, west to east + north to south, and from T.b.gambiense to T.b.rhodesiense endemic countries: Guinea, Sierra Leone, Côte d'Ivoire, Nigeria, Cameroon, Chad, Central African Republic, South Sudan, Equatorial Guinea, Gabon, Congo, The Democratic Republic of the Congo, Angola, Uganda, Kenya, United Republic of Tanzania, Burundi, Zambia, Malawi, Mozambique and Zimbabwe. (PDF)

  20. n

    WorldMap Plant Mapping

    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). WorldMap Plant Mapping [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214611656-SCIOPS
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    WorldMap shows single species plant distributions and cumulative map distributions for the following plant groups in sub Saharan Africa: Gymnosperms, Dicotyledons, Monocotyledons, Kenyan Trees, Shrubs, and Lianas, Northeastern Tropical African forest trees, and Southern Africa trees.

    There are thousands of single species plant distribution maps currently in distribution, documenting plant distributions over the vast majority of sub-Saharan Africa. The maps display species distributions on a per-species basis, and date back over the last 100+ years documenting what for many was a life's work.

    Current conservation initiatives call for the understanding of the total species composition, or the levels of diversity, of areas under analysis. The raw data for this is available in The single species distribution maps. However, cumulative maps of species distributions displaying broader distributions at higher taxonomic scales have historically not been available due to technological limitations.

    The advent of faster computers with large amounts of digital storage space, and the development of the software application 'WORLDMAP,' makes constructing these cumulative plant species databases a possibility.

    It is predicted that there are around 40,000 sub-Saharan African plant species. It is the aim of CELP to compile 10-15% of these from available distribution maps. To date, over 3500 available species have been mapped at the 1-degree resolution here at CELP.

    Information was obtained from "http://www.york.ac.uk/res/celp/webpages/projects/worldmap/worldmap.htm"

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). South Africa - Population density - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/south-africa-population-density-2015

South Africa - Population density - Dataset - ENERGYDATA.INFO

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 23, 2024
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
South Africa
Description

Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.

Search
Clear search
Close search
Google apps
Main menu