4 datasets found
  1. c

    Population - Counties 2015-2019

    • covid19.census.gov
    Updated Mar 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2021). Population - Counties 2015-2019 [Dataset]. https://covid19.census.gov/items/6e9a10b9ca4d4f94bdde4f7094dec758
    Explore at:
    Dataset updated
    Mar 19, 2021
    Dataset authored and provided by
    US Census Bureau
    Description

    This layer shows Population. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
    This layer is symbolized to show the point by Population Density and size of the point by Total Population. The size of the symbol represents the total count of housing units. Population Density was calculated based on the total population and area of land fields, which both came from the U.S. Census Bureau. Formula used for Calculating the Pop Density (B01001_001E/GEO_LAND_AREA_SQ_KM). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B01001, B09020Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
    All of these are rendered in this dataset as null (blank) values.

  2. Urban and Rural Population in the US (2020 Census)

    • data-bgky.hub.arcgis.com
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Urban and Rural Population in the US (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/items/0f98fc66a9fa4f94953718578cbd77a8
    Explore at:
    Dataset updated
    Jun 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map's colors indicate which population is larger in each area: urban (green) or rural (yellow). The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico.The U.S. Census designates each census block as part of an urban area or as rural. Larger geographies in this map such as block group, tract, county and state can therefore have a mix of urban and rural population. This map illustrates the 100% urban areas in dark green, and 100% rural areas in dark yellow. Areas with mixed urban/rural population have softer shades of green or yellow, to give a visual indication of where change may be happening. From the Census:"The Census Bureau’s urban-rural classification is a delineation of geographic areas, identifying both individual urban areas and the rural area of the nation. The Census Bureau’s urban areas represent densely developed territory, and encompass residential, commercial, and other non-residential urban land uses. The Census Bureau delineates urban areas after each decennial census by applying specified criteria to decennial census and other data. Rural encompasses all population, housing, and territory not included within an urban area.For the 2020 Census, an urban area will comprise a densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or have a population of at least 5,000." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  3. f

    MOESM1 of Disease surveillance using online news: an extended study of...

    • springernature.figshare.com
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yiding Zhang; Motomu Ibaraki; Franklin Schwartz (2023). MOESM1 of Disease surveillance using online news: an extended study of dengue fever in India [Dataset]. http://doi.org/10.6084/m9.figshare.11357951.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Authors
    Yiding Zhang; Motomu Ibaraki; Franklin Schwartz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Additional file 1: Basic Information of India. Table S1. List of Indian States and Union Territories. Figure S1. Map of Indian States and Union Territories. Figure S2. Map of Indian population density. Figure S3. Averaged annual rainfall map of India (2013-2016). The red arrows are monsoon move directions during summer.

  4. S

    Democracy and English Indicators

    • scidb.cn
    Updated Apr 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullah AlKhuraibet (2024). Democracy and English Indicators [Dataset]. http://doi.org/10.57760/sciencedb.16236
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 12, 2024
    Dataset provided by
    Science Data Bank
    Authors
    Abdullah AlKhuraibet
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The data collected aim to test whether English proficiency levels in a country are positively associated with higher democratic values in that country. English proficiency is sourced from statistics by Education First’s "EF English Proficiency Index" which covers countries' scores for the calendar year 2022 and 2021. The EF English Proficiency Index ranks 111 countries in five different categories based on their English proficiency scores that were calculated from the test results of 2.1 million adults. While democratic values are operationalized through the liberal democracy index from the V-Dem Institute annual report for 2022 and 2021. Additionally, the data is utilized to test whether English language media consumption acts as a mediating variable between English proficiency and democracy levels in a country, while also looking at other possible regression variables. In order to conduct the linear regression analyses for the dats, the software that was utilized for this research was Microsoft Excel.The raw data set consists of 90 nation states in two years from 2022 and 2021. The raw data is utilized for two separate data sets the first of which is democracy indicators which has the regression variables of EPI, HDI, and GDP. For this table set there is a total of 360 data entries. HDI scores are a statistical summary measure that is developed by the United Nations Development Programme (UNDP) which measures the levels of human development in 190 countries. The data for nominal gross domestic product scores (GDP) are sourced from the World Bank. Having strong regression variables that have been proven to have a positive link with democracy in the data analysis such as GDP and HDI, would allow the regression analysis to identify whether there is a true relationship between English proficiency and democracy levels in a country. While the second data set has a total of 720 data entries and aims to identify English proficiency indicators the data set has 7 various regression variables which include, LDI scores, Years of Mandatory English Education, Heads of States Publicly speaking English, GDP PPP (2021USD), Common Wealth, BBC web traffic and CNN web traffic. The data for years of mandatory English education is sourced from research at the University of Winnipeg and is coded in the data set based on the number of years a country has English as a mandatory subject. The range of this data is from 0 to 13 years of English being mandatory. It is important to note that this data only concerns public schools and does not extend to the private school systems in each country. The data for heads of state publicly speaking English was done through a video data analysis of all heads of state. The data was only used for heads of state who had been in their position for at least a year to ensure the accuracy of the data collected; with a year in power, for heads of state that had not been in their position for a year, data was taken from the previous head of state. This data only takes into account speeches and interviews that were conducted during their incumbency. The data for each country’s GDP PPP scores are sourced from the World Bank, which was last updated for a majority of the countries in 2021 and is tied to the US dollar. Data for the commonwealth will only include members of the commonwealth that have been historically colonized by the United Kingdom. Any country that falls under that category will be coded as 1 and any country that does not will be coded as 0. For BBC and CNN web traffic that data is sourced by using tools in Semrush which provide a rough estimate of how much web traffic each news site generates in each country. Which will be utilized to identify the average number of web traffic for BBC News and CNN World News for both the 2021 and 2022 calendar. The traffic for each country will also be measured per capita, per 10 thousand people to ensure that the population density of a country does not influence the results. The population of each country for both 2021 and 2022 is sourced from the United Nations revision of World Population Prospects of both 2021 and 2022 respectively.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
US Census Bureau (2021). Population - Counties 2015-2019 [Dataset]. https://covid19.census.gov/items/6e9a10b9ca4d4f94bdde4f7094dec758

Population - Counties 2015-2019

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 19, 2021
Dataset authored and provided by
US Census Bureau
Description

This layer shows Population. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
This layer is symbolized to show the point by Population Density and size of the point by Total Population. The size of the symbol represents the total count of housing units. Population Density was calculated based on the total population and area of land fields, which both came from the U.S. Census Bureau. Formula used for Calculating the Pop Density (B01001_001E/GEO_LAND_AREA_SQ_KM). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B01001, B09020Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
All of these are rendered in this dataset as null (blank) values.

Search
Clear search
Close search
Google apps
Main menu