100+ datasets found
  1. Population density in California 1960-2018

    • statista.com
    Updated Apr 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2014). Population density in California 1960-2018 [Dataset]. https://www.statista.com/statistics/304672/california-population-density/
    Explore at:
    Dataset updated
    Apr 25, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States, California
    Description

    This graph shows the population density in the federal state of California from 1960 to 2018. In 2018, the population density of California stood at 253.9 residents per square mile of land area.

  2. Population density in the U.S. 2023, by state

    • statista.com
    • akomarchitects.com
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Sep 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  3. d

    TIGER/Line Shapefile, 2019, state, California, Current Census Tract...

    • catalog.data.gov
    Updated Oct 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). TIGER/Line Shapefile, 2019, state, California, Current Census Tract State-based [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2019-state-california-current-census-tract-state-based
    Explore at:
    Dataset updated
    Oct 12, 2021
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  4. C

    California Urban Area Delineations

    • data.ca.gov
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Finance (2025). California Urban Area Delineations [Dataset]. https://data.ca.gov/dataset/california-urban-area-delineations
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset provided by
    Calif. Dept. of Finance Demographic Research Unit
    Authors
    California Department of Finance
    Area covered
    California
    Description

    The Census Bureau released revised delineations for urban areas on December 29, 2022. The new criteria (contained in this Federal Register Notice) is based primarily on housing unit density measured at the census block level. The minimum qualifying threshold for inclusion as an urban area is an area that contains at least 2,000 housing units or has a population of at least 5,000 persons. It also eliminates the classification of areas as “urban clusters/urbanized areas”. This represents a change from 2010, where urban areas were defined as areas consisting of 50,000 people or more and urban clusters consisted of at least 2,500 people but less than 50,000 people with at least 1,500 people living outside of group quarters. Due to the new population thresholds for urban areas, 36 urban clusters in California are no longer considered urban areas, leaving California with 193 urban areas after the new criteria was implemented.

    The State of California experienced an increase of 1,885,884 in the total urban population, or 5.3%. However, the total urban area population as a percentage of the California total population went down from 95% to 94.2%. For more information about the mapped data, download the Excel spreadsheet here.

    Please note that some of the 2020 urban areas have different names or additional place names as a result of the inclusion of housing unit counts as secondary naming criteria.

    Please note there are four urban areas that cross state boundaries in Arizona and Nevada. For 2010, only the parts within California are displayed on the map; however, the population and housing estimates represent the entirety of the urban areas. For 2020, the population and housing unit estimates pertains to the areas within California only.

    Data for this web application was derived from the 2010 and 2020 Censuses (2010 and 2020 Census Blocks, 2020 Urban Areas, and Counties) and the 2016-2020 American Community Survey (2010 -Urban Areas) and can be found at data.census.gov.

    For more information about the urban area delineations, visit the Census Bureau's Urban and Rural webpage and FAQ.

    To view more data from the State of California Department of Finance, visit the Demographic Research Unit Data Hub.

  5. N

    California, MO Age Cohorts Dataset: Children, Working Adults, and Seniors in...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). California, MO Age Cohorts Dataset: Children, Working Adults, and Seniors in California - Population and Percentage Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/california-mo-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California, Missouri
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the California population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of California. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 to 64 years with a poulation of 2,646 (58.50% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the California population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in California is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the California is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for California Population by Age. You can refer the same here

  6. s

    Population Density Per Acre: San Francisco Bay Area, California, 2000

    • searchworks.stanford.edu
    zip
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Population Density Per Acre: San Francisco Bay Area, California, 2000 [Dataset]. https://searchworks.stanford.edu/view/bf412pw9968
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 4, 2021
    Area covered
    San Francisco Bay Area, California
    Description

    This raster dataset depicts the population denisty of the nine county San Francisco Bay Area Region, California produced with a Dasymetric Mapping Technique, which is used to depict quantitative areal data using boundaries that divide an area into zones of relative homogeneity with the purpose of better portraying the population distribution. The source data was then adjusted in order to get convert the units to persons per acre. This dataset is an accurate representation of population distribution within census boundaries and can be used in a number of ways, including as the Conservation Suitability layer for the Marxan inputs and the watershed integrity analysis.

  7. V

    Vietnam Population Density: MR: Ca Mau

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Vietnam Population Density: MR: Ca Mau [Dataset]. https://www.ceicdata.com/en/vietnam/population-density-by-provinces/population-density-mr-ca-mau
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    Vietnam
    Variables measured
    Population
    Description

    Vietnam Population Density: MR: Ca Mau data was reported at 228.900 Person/sq km in 2023. This records a decrease from the previous number of 229.000 Person/sq km for 2022. Vietnam Population Density: MR: Ca Mau data is updated yearly, averaging 228.900 Person/sq km from Dec 2011 (Median) to 2023, with 13 observations. The data reached an all-time high of 229.500 Person/sq km in 2016 and a record low of 226.000 Person/sq km in 2020. Vietnam Population Density: MR: Ca Mau data remains active status in CEIC and is reported by General Statistics Office. The data is categorized under Global Database’s Vietnam – Table VN.G003: Population Density: By Provinces.

  8. N

    California City, CA Age Group Population Dataset: A Complete Breakdown of...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). California City, CA Age Group Population Dataset: A Complete Breakdown of California City Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/california-city-ca-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California City, California
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the California City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for California City. The dataset can be utilized to understand the population distribution of California City by age. For example, using this dataset, we can identify the largest age group in California City.

    Key observations

    The largest age group in California City, CA was for the group of age 30 to 34 years years with a population of 1,556 (10.50%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in California City, CA was the 80 to 84 years years with a population of 86 (0.58%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the California City is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of California City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for California City Population by Age. You can refer the same here

  9. C

    Canada CA: Population Density: People per Square Km

    • ceicdata.com
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Canada CA: Population Density: People per Square Km [Dataset]. https://www.ceicdata.com/en/canada/population-and-urbanization-statistics/ca-population-density-people-per-square-km
    Explore at:
    Dataset updated
    Oct 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2010 - Dec 1, 2021
    Area covered
    Canada
    Variables measured
    Population
    Description

    Canada CA: Population Density: People per Square Km data was reported at 4.350 Person/sq km in 2021. This records an increase from the previous number of 4.239 Person/sq km for 2020. Canada CA: Population Density: People per Square Km data is updated yearly, averaging 3.127 Person/sq km from Dec 1961 (Median) to 2021, with 61 observations. The data reached an all-time high of 4.350 Person/sq km in 2021 and a record low of 2.038 Person/sq km in 1961. Canada CA: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Canada – Table CA.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.;Food and Agriculture Organization and World Bank population estimates.;Weighted average;

  10. f

    Table 1_Low population density settlement patterns on California's Northern...

    • frontiersin.figshare.com
    xlsx
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher S. Jazwa; Tyler R. Molter; Christopher T. Morgan (2025). Table 1_Low population density settlement patterns on California's Northern Channel Islands.xlsx [Dataset]. http://doi.org/10.3389/fearc.2025.1535110.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    Frontiers
    Authors
    Christopher S. Jazwa; Tyler R. Molter; Christopher T. Morgan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Channel Islands of California, California
    Description

    Chronological and archaeofaunal data indicate that settlement of the earliest, low-density populations on California's Northern Channel Islands was conditioned by variables other than those affecting later, high-density populations. We use a variant of the Ideal Free Distribution (IFD) with considerations for low population densities to model early settlement on Santa Rosa Island (SRI). Early in time, individuals could have maximized their per-capita resource return at the mouth of any of SRI's 19 major drainages, so it was not necessary to distribute themselves in only those habitats with the highest potential return rate. Instead, while some individuals targeted high-ranked habitats, others settled at low-ranked habitats along the south coast that traditional IFD model variants predict would be first settled later. These habitats may have been targeted for other, less often considered environmental characteristics that might have been less important during periods characterized by higher population density or resource stress, perhaps including protection from prevailing northwesterly storms. During the relatively dry Middle Holocene, when population density increased and there was a greater focus on the high-ranked northwest coast, settlement intensity on the south coast did not increase and may have decreased. Later, as settlement at high-ranked habitats in-filled to the point that traditional IFD models predict the lowest-ranked habitats should be settled, there is evidence of population growth and reoccupation on the south coast. This study has implications for understanding initial colonization of new geographic areas, including larger regions in which the settlers did not have complete knowledge of all potential settlement locations.

  11. Population in the states of the U.S. 2024

    • statista.com
    • akomarchitects.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Population in the states of the U.S. 2024 [Dataset]. https://www.statista.com/statistics/183497/population-in-the-federal-states-of-the-us/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    California was the state with the highest resident population in the United States in 2024, with 39.43 million people. Wyoming had the lowest population with about 590,000 residents. Living the American Dream Ever since the opening of the West in the United States, California has represented the American Dream for both Americans and immigrants to the U.S. The warm weather, appeal of Hollywood and Silicon Valley, as well as cities that stick in the imagination such as San Francisco and Los Angeles, help to encourage people to move to California. Californian demographics California is an extremely diverse state, as no one ethnicity is in the majority. Additionally, it has the highest percentage of foreign-born residents in the United States. By 2040, the population of California is expected to increase by almost 10 million residents, which goes to show that its appeal, both in reality and the imagination, is going nowhere fast.

  12. MCNA - Population Points with T/D Standards

    • data.ca.gov
    • data.chhs.ca.gov
    • +7more
    Updated Mar 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Health Care Services (2023). MCNA - Population Points with T/D Standards [Dataset]. https://data.ca.gov/dataset/mcna-population-points-with-t-d-standards
    Explore at:
    zip, geojson, csv, arcgis geoservices rest api, kml, htmlAvailable download formats
    Dataset updated
    Mar 1, 2023
    Dataset authored and provided by
    California Department of Health Care Serviceshttp://www.dhcs.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    Updated 10/6/2022: In the Time/Distance analysis process, points that were found to have been included initially, but with no significant or year-round population were removed. The layer of removed points is also available for viewing. MCNA - Removed Population Points

    The Network Adequacy Standards Representative Population Points feature layer contains 97,694 points spread across California that were created from USPS postal delivery route data and US Census data. Each population point also contains the variables for Time and Distance Standards for the County that the point is within. These standards differ by County due to the County "type" which is based on the population density of the county. There are 5 county categories within California: Rural (<50 people/sq mile), Small (51-200 people/sq mile), Medium (201-599 people/sq mile), and Dense (>600 people/sq mile). The Time and Distance data is divided out by Provider Type, Adult and Pediatric separately, so that the Time or Distance analysis can be performed with greater detail.
    • Hospitals
    • OB/GYN Specialty
    • Adult Cardiology/Interventional Cardiology
    • Adult Dermatology
    • Adult Endocrinology
    • Adult ENT/Otolaryngology
    • Adult Gastroenterology
    • Adult General Surgery
    • Adult Hematology
    • Adult HIV/AIDS/Infectious Disease
    • Adult Mental Health Outpatient Services
    • Adult Nephrology
    • Adult Neurology
    • Adult Oncology
    • Adult Ophthalmology
    • Adult Orthopedic Surgery
    • Adult PCP
    • Adult Physical Medicine and Rehabilitation
    • Adult Psychiatry
    • Adult Pulmonology
    • Pediatric Cardiology/Interventional Cardiology
    • Pediatric Dermatology
    • Pediatric Endocrinology
    • Pediatric ENT/Otolaryngology
    • Pediatric Gastroenterology
    • Pediatric General Surgery
    • Pediatric Hematology
    • Pediatric HIV/AIDS/Infectious Disease
    • Pediatric Mental Health Outpatient Services
    • Pediatric Nephrology
    • Pediatric Neurology
    • Pediatric Oncology
    • Pediatric Ophthalmology
    • Pediatric Orthopedic Surgery
    • Pediatric PCP
    • Pediatric Physical Medicine and Rehabilitation
    • Pediatric Psychiatry
    • Pediatric Pulmonology
  13. 2020 Cartographic Boundary File (KML), Current Census Tract for California,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2020 Cartographic Boundary File (KML), Current Census Tract for California, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2020-cartographic-boundary-file-kml-current-census-tract-for-california-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  14. s

    Population Density in Watersheds: San Francisco Bay Area, California, 2009

    • searchworks.stanford.edu
    zip
    Updated Nov 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Population Density in Watersheds: San Francisco Bay Area, California, 2009 [Dataset]. https://searchworks.stanford.edu/view/wc460zb2749
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 21, 2021
    Area covered
    San Francisco Bay Area, California
    Description

    This polygon shapefile depicts a watershed integrity cluster analysis at the CalWater 2.2.1 Planning Watershed (PWS) level performed by mapping factors representing some of the most significant watershed threats. Each of the individual watershed integrity factors was individually mapped and then combined in the watershed cluster analysis. This individual threat, cultivated, was created by taking CalWater watersheds at the planning unit level (most refined) and running zonal stats, part of spatial analyst. The Calwater PWS watershed was the zone dataset (pwsname as the zone field) and Population Density as the value raster. The result gives you the mean percent population density of the nine county San Francisco Bay Area Region, California at the watershed level in a table that you can join back to the CalWater GIS layer and then symbolize as a graduated color with the mean being the value field. This analysis was done by the Conservation Lands Network Fish and Riparian Focus Team.

  15. Data from: California Current Ecosystem site, station Los Angeles County, CA...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 10, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census; Inter-University Consortium for Political and Social Research; EcoTrends Project (2015). California Current Ecosystem site, station Los Angeles County, CA (FIPS 6037), study of human population density in units of numberPerKilometerSquared on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F966%2F2
    Explore at:
    Dataset updated
    Mar 10, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    U.S. Bureau of the Census; Inter-University Consortium for Political and Social Research; EcoTrends Project
    Time period covered
    Jan 1, 1880 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from California Current Ecosystem (CCE) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.

  16. TIGER/Line Shapefile, 2022, State, California, CA, Census Tract

    • catalog.data.gov
    Updated Jan 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2022, State, California, CA, Census Tract [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2022-state-california-ca-census-tract
    Explore at:
    Dataset updated
    Jan 28, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    California
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  17. Medical Service Study Areas

    • data.chhs.ca.gov
    • healthdata.gov
    • +5more
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2024). Medical Service Study Areas [Dataset]. https://data.chhs.ca.gov/dataset/medical-service-study-areas
    Explore at:
    csv, html, geojson, kml, zip, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description
    This is the current Medical Service Study Area. California Medical Service Study Areas are created by the California Department of Health Care Access and Information (HCAI).

    Check the Data Dictionary for field descriptions.


    Checkout the California Healthcare Atlas for more Medical Service Study Area information.

    This is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.


    <a href="https://hcai.ca.gov/">https://hcai.ca.gov/</a>

    Source of update: American Community Survey 5-year 2006-2010 data for poverty. For source tables refer to InfoUSA update procedural documentation. The 2010 MSSA Detail layer was developed to update fields affected by population change. The American Community Survey 5-year 2006-2010 population data pertaining to total, in households, race, ethnicity, age, and poverty was used in the update. The 2010 MSSA Census Tract Detail map layer was developed to support geographic information systems (GIS) applications, representing 2010 census tract geography that is the foundation of 2010 medical service study area (MSSA) boundaries. ***This version is the finalized MSSA reconfiguration boundaries based on the US Census Bureau 2010 Census. In 1976 Garamendi Rural Health Services Act, required the development of a geographic framework for determining which parts of the state were rural and which were urban, and for determining which parts of counties and cities had adequate health care resources and which were "medically underserved". Thus, sub-city and sub-county geographic units called "medical service study areas [MSSAs]" were developed, using combinations of census-defined geographic units, established following General Rules promulgated by a statutory commission. After each subsequent census the MSSAs were revised. In the scheduled revisions that followed the 1990 census, community meetings of stakeholders (including county officials, and representatives of hospitals and community health centers) were held in larger metropolitan areas. The meetings were designed to develop consensus as how to draw the sub-city units so as to best display health care disparities. The importance of involving stakeholders was heightened in 1992 when the United States Department of Health and Human Services' Health and Resources Administration entered a formal agreement to recognize the state-determined MSSAs as "rational service areas" for federal recognition of "health professional shortage areas" and "medically underserved areas". After the 2000 census, two innovations transformed the process, and set the stage for GIS to emerge as a major factor in health care resource planning in California. First, the Office of Statewide Health Planning and Development [OSHPD], which organizes the community stakeholder meetings and provides the staff to administer the MSSAs, entered into an Enterprise GIS contract. Second, OSHPD authorized at least one community meeting to be held in each of the 58 counties, a significant number of which were wholly rural or frontier counties. For populous Los Angeles County, 11 community meetings were held. As a result, health resource data in California are collected and organized by 541 geographic units. The boundaries of these units were established by community healthcare experts, with the objective of maximizing their usefulness for needs assessment purposes. The most dramatic consequence was introducing a data simultaneously displayed in a GIS format. A two-person team, incorporating healthcare policy and GIS expertise, conducted the series of meetings, and supervised the development of the 2000-census configuration of the MSSAs.

    MSSA Configuration Guidelines (General Rules):- Each MSSA is composed of one or more complete census tracts.- As a general rule, MSSAs are deemed to be "rational service areas [RSAs]" for purposes of designating health professional shortage areas [HPSAs], medically underserved areas [MUAs] or medically underserved populations [MUPs].- MSSAs will not cross county lines.- To the extent practicable, all census-defined places within the MSSA are within 30 minutes travel time to the largest population center within the MSSA, except in those circumstances where meeting this criterion would require splitting a census tract.- To the extent practicable, areas that, standing alone, would meet both the definition of an MSSA and a Rural MSSA, should not be a part of an Urban MSSA.- Any Urban MSSA whose population exceeds 200,000 shall be divided into two or more Urban MSSA Subdivisions.- Urban MSSA Subdivisions should be within a population range of 75,000 to 125,000, but may not be smaller than five square miles in area. If removing any census tract on the perimeter of the Urban MSSA Subdivision would cause the area to fall below five square miles in area, then the population of the Urban MSSA may exceed 125,000. - To the extent practicable, Urban MSSA Subdivisions should reflect recognized community and neighborhood boundaries and take into account such demographic information as income level and ethnicity. Rural Definitions: A rural MSSA is an MSSA adopted by the Commission, which has a population density of less than 250 persons per square mile, and which has no census defined place within the area with a population in excess of 50,000. Only the population that is located within the MSSA is counted in determining the population of the census defined place. A frontier MSSA is a rural MSSA adopted by the Commission which has a population density of less than 11 persons per square mile. Any MSSA which is not a rural or frontier MSSA is an urban MSSA. Last updated December 6th 2024.
  18. Population Distribution for Medi-Cal Enrollees by Met and Unmet Share of...

    • data.ca.gov
    • data.chhs.ca.gov
    • +2more
    csv, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Health Care Services (2025). Population Distribution for Medi-Cal Enrollees by Met and Unmet Share of Cost (SOC) [Dataset]. https://data.ca.gov/dataset/population-distribution-for-medi-cal-enrollees-by-met-and-unmet-share-of-cost-soc
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Health Care Serviceshttp://www.dhcs.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset represents the counts of those individuals who have been determined to have a share of cost (SOC) obligation, which is the monthly amount of medical expenses they must incur before they are eligible to receive Medi-Cal benefits. The dataset includes individuals who have a met or unmet monthly SOC obligation. Individuals who have not met their monthly SOC obligation are not eligible for Medi-Cal. SOC obligations are calculated during the eligibility determination process based on household income.

  19. N

    California, PA Age Group Population Dataset: A Complete Breakdown of...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). California, PA Age Group Population Dataset: A Complete Breakdown of California Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/451533ea-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania, California
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the California population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for California. The dataset can be utilized to understand the population distribution of California by age. For example, using this dataset, we can identify the largest age group in California.

    Key observations

    The largest age group in California, PA was for the group of age 15 to 19 years years with a population of 1,371 (27.17%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in California, PA was the 75 to 79 years years with a population of 60 (1.19%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the California is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of California total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for California Population by Age. You can refer the same here

  20. Population and dwelling counts: Canada, provinces and territories

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Feb 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2022). Population and dwelling counts: Canada, provinces and territories [Dataset]. http://doi.org/10.25318/9810000101-eng
    Explore at:
    Dataset updated
    Feb 9, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table presents the 2021 and 2016 population and dwelling counts, land area and population density for Canada, the provinces and the territories. It also shows the percentage change in the population and dwelling counts between 2016 and 2021.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2014). Population density in California 1960-2018 [Dataset]. https://www.statista.com/statistics/304672/california-population-density/
Organization logo

Population density in California 1960-2018

Explore at:
Dataset updated
Apr 25, 2014
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States, California
Description

This graph shows the population density in the federal state of California from 1960 to 2018. In 2018, the population density of California stood at 253.9 residents per square mile of land area.

Search
Clear search
Close search
Google apps
Main menu