This graph shows the population density in the federal state of California from 1960 to 2018. In 2018, the population density of California stood at 253.9 residents per square mile of land area.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
This dataset contains human population density for the state of California and a small portion of western Nevada for the year 2000. The population density is based on US Census Bureau data and has a cell size of 990 meters.
The purpose of the dataset is to provide a consistent statewide human density GIS layer for display, analysis and modeling purposes.
The state of California, and a very small portion of western Nevada, was divided into pixels with a cell size 0.98 km2, or 990 meters on each side. For each pixel, the US Census Bureau data was clipped, the total human population was calculated, and that population was divided by the area to get human density (people/km2) for each pixel.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
This map of human habitation was developed, following a modification of Schumacher et al. (2000), by incorporating 2000 U.S Census Data and land ownership. The 2000 U.S. Census Block data and ownership map of the western United States were used to correct the population density for uninhabited public lands. All census blocks in the western United States were merged into one shapefile which was then clipped to contain only those areas found on private or indian reservation lands because human habitation on federal land is negligible. The area (ha) for each corrected polygon was calculated and the 2000 census block data table was joined to the shapefile. In a new field, population density (individuals/ha) corrected for public land in census blocks was calculated . SHAPEGRID in ARC/INFO was used to convert population density values to grid with 90m resolution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vietnam Population Density: MR: Ca Mau data was reported at 228.900 Person/sq km in 2023. This records a decrease from the previous number of 229.000 Person/sq km for 2022. Vietnam Population Density: MR: Ca Mau data is updated yearly, averaging 228.900 Person/sq km from Dec 2011 (Median) to 2023, with 13 observations. The data reached an all-time high of 229.500 Person/sq km in 2016 and a record low of 226.000 Person/sq km in 2020. Vietnam Population Density: MR: Ca Mau data remains active status in CEIC and is reported by General Statistics Office. The data is categorized under Global Database’s Vietnam – Table VN.G003: Population Density: By Provinces.
This raster dataset depicts the population denisty of the nine county San Francisco Bay Area Region, California produced with a Dasymetric Mapping Technique, which is used to depict quantitative areal data using boundaries that divide an area into zones of relative homogeneity with the purpose of better portraying the population distribution. The source data was then adjusted in order to get convert the units to persons per acre. This dataset is an accurate representation of population distribution within census boundaries and can be used in a number of ways, including as the Conservation Suitability layer for the Marxan inputs and the watershed integrity analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the state of California from 1900 to 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chronological and archaeofaunal data indicate that settlement of the earliest, low-density populations on California's Northern Channel Islands was conditioned by variables other than those affecting later, high-density populations. We use a variant of the Ideal Free Distribution (IFD) with considerations for low population densities to model early settlement on Santa Rosa Island (SRI). Early in time, individuals could have maximized their per-capita resource return at the mouth of any of SRI's 19 major drainages, so it was not necessary to distribute themselves in only those habitats with the highest potential return rate. Instead, while some individuals targeted high-ranked habitats, others settled at low-ranked habitats along the south coast that traditional IFD model variants predict would be first settled later. These habitats may have been targeted for other, less often considered environmental characteristics that might have been less important during periods characterized by higher population density or resource stress, perhaps including protection from prevailing northwesterly storms. During the relatively dry Middle Holocene, when population density increased and there was a greater focus on the high-ranked northwest coast, settlement intensity on the south coast did not increase and may have decreased. Later, as settlement at high-ranked habitats in-filled to the point that traditional IFD models predict the lowest-ranked habitats should be settled, there is evidence of population growth and reoccupation on the south coast. This study has implications for understanding initial colonization of new geographic areas, including larger regions in which the settlers did not have complete knowledge of all potential settlement locations.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the Atlas of Canada Poster Map Series, is a poster showing population density across Canada. There is a relief base to the map on top of which is shown all populated areas of Canada where the population density is great than 0.4 persons per square kilometer. This area is then divided into five colour classes of population density based on Statistics Canada's census divisions.
California was the state with the highest resident population in the United States in 2024, with 39.43 million people. Wyoming had the lowest population with about 590,000 residents. Living the American Dream Ever since the opening of the West in the United States, California has represented the American Dream for both Americans and immigrants to the U.S. The warm weather, appeal of Hollywood and Silicon Valley, as well as cities that stick in the imagination such as San Francisco and Los Angeles, help to encourage people to move to California. Californian demographics California is an extremely diverse state, as no one ethnicity is in the majority. Additionally, it has the highest percentage of foreign-born residents in the United States. By 2040, the population of California is expected to increase by almost 10 million residents, which goes to show that its appeal, both in reality and the imagination, is going nowhere fast.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 26 series, with data for years 1851 - 1971 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Unit of measure (1 items: Persons ...) Geography (13 items: Canada; Newfoundland and Labrador; Nova Scotia; Prince Edward Island ...) Estimates (2 items: Population; Population density per square mile ...).
In 2023, the resident population of California was ***** million. This is a slight decrease from the previous year, with ***** million people in 2022. This makes it the most populous state in the U.S. Californian demographics Along with an increase in population, California’s gross domestic product (GDP) has also been increasing, from *** trillion U.S. dollars in 2000 to **** trillion U.S. dollars in 2023. In the same time period, the per-capita personal income has almost doubled, from ****** U.S. dollars in 2000 to ****** U.S. dollars in 2022. In 2023, the majority of California’s resident population was Hispanic or Latino, although the number of white residents followed as a close second, with Asian residents making up the third-largest demographic in the state. The dark side of the Golden State While California is one of the most well-known states in the U.S., is home to Silicon Valley, and one of the states where personal income has been increasing over the past 20 years, not everyone in California is so lucky: In 2023, the poverty rate in California was about ** percent, and the state had the fifth-highest rate of homelessness in the country during that same year, with an estimated ** homeless people per 10,000 of the population.
As of 2020, the Mexican state of Baja California Sur accommodated a population of approximately ******* inhabitants. The gender distribution among the residents was relatively equal, with women comprising ****% and men making up ****% of the total population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
VITAL SIGNS INDICATOR Population (LU1)
FULL MEASURE NAME Population estimates
LAST UPDATED October 2019
DESCRIPTION Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.
DATA SOURCES U.S Census Bureau: Decennial Census No link available (1960-1990) http://factfinder.census.gov (2000-2010)
California Department of Finance: Population and Housing Estimates Table E-6: County Population Estimates (1961-1969) Table E-4: Population Estimates for Counties and State (1971-1989) Table E-8: Historical Population and Housing Estimates (2001-2018) Table E-5: Population and Housing Estimates (2011-2019) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census - via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University Population Estimates (1970 - 2010) http://www.s4.brown.edu/us2010/index.htm
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2011-2017) http://factfinder.census.gov
U.S. Census Bureau: Intercensal Estimates Estimates of the Intercensal Population of Counties (1970-1979) Intercensal Estimates of the Resident Population (1980-1989) Population Estimates (1990-1999) Annual Estimates of the Population (2000-2009) Annual Estimates of the Population (2010-2017) No link available (1970-1989) http://www.census.gov/popest/data/metro/totals/1990s/tables/MA-99-03b.txt http://www.census.gov/popest/data/historical/2000s/vintage_2009/metro.html https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) All legal boundaries and names for Census geography (metropolitan statistical area, county, city, and tract) are as of January 1, 2010, released beginning November 30, 2010, by the U.S. Census Bureau. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of August 2019. For more information on PDA designation see http://gis.abag.ca.gov/website/PDAShowcase/.
Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970 -2010) and the American Community Survey (2008-2012 5-year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.
Population estimates for Bay Area PDAs are from the decennial Census (1970 - 2010) and the American Community Survey (2006-2010 5 year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Population estimates for PDAs are derived from Census population counts at the tract level for 1970-1990 and at the block group level for 2000-2017. Population from either tracts or block groups are allocated to a PDA using an area ratio. For example, if a quarter of a Census block group lies with in a PDA, a quarter of its population will be allocated to that PDA. Tract-to-PDA and block group-to-PDA area ratios are calculated using gross acres. Estimates of population density for PDAs use gross acres as the denominator.
Annual population estimates for metropolitan areas outside the Bay Area are from the Census and are benchmarked to each decennial Census. The annual estimates in the 1990s were not updated to match the 2000 benchmark.
The following is a list of cities and towns by geographical area: Big Three: San Jose, San Francisco, Oakland Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville Unincorporated: all unincorporated towns
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from California Current Ecosystem (CCE) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.
https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
20 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2020.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents.
Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley.
How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life?
Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the California population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for California. The dataset can be utilized to understand the population distribution of California by age. For example, using this dataset, we can identify the largest age group in California.
Key observations
The largest age group in California, PA was for the group of age 15 to 19 years years with a population of 1,371 (27.17%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in California, PA was the 75 to 79 years years with a population of 60 (1.19%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Age. You can refer the same here
This polygon shapefile depicts a watershed integrity cluster analysis at the CalWater 2.2.1 Planning Watershed (PWS) level performed by mapping factors representing some of the most significant watershed threats. Each of the individual watershed integrity factors was individually mapped and then combined in the watershed cluster analysis. This individual threat, cultivated, was created by taking CalWater watersheds at the planning unit level (most refined) and running zonal stats, part of spatial analyst. The Calwater PWS watershed was the zone dataset (pwsname as the zone field) and Population Density as the value raster. The result gives you the mean percent population density of the nine county San Francisco Bay Area Region, California at the watershed level in a table that you can join back to the CalWater GIS layer and then symbolize as a graduated color with the mean being the value field. This analysis was done by the Conservation Lands Network Fish and Riparian Focus Team.
This graph shows the population density in the federal state of California from 1960 to 2018. In 2018, the population density of California stood at 253.9 residents per square mile of land area.