Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World population density by year from 1961 to 2022.
This dataset contains human population density for the state of California and a small portion of western Nevada for the year 2000. The population density is based on US Census Bureau data and has a cell size of 990 meters.
The purpose of the dataset is to provide a consistent statewide human density GIS layer for display, analysis and modeling purposes.
The state of California, and a very small portion of western Nevada, was divided into pixels with a cell size 0.98 km2, or 990 meters on each side. For each pixel, the US Census Bureau data was clipped, the total human population was calculated, and that population was divided by the area to get human density (people/km2) for each pixel.
This dataset contains estimates of the number of persons per 30 arc-second grid cell, consistent with national censuses and population registers with respect to relative spatial distribution but adjusted to match the 2015 Revision of UN World Population Prospects country totals. There is one image for each modeled year. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.
Grid of population density in the conterminous United States at a resolution of one kilometer. The grid was converted from an ASCII file obtained from the Consortium for International Earth Science Information Network (CIESIN).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density (people per sq. km of land area) in World was reported at 61.59 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Population density (people per sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
The Gridded Population of the World, Version 3 (GPWv3): Population Density Grid consists of estimates of human population for the years 1990, 1995, and 2000 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population density grids are derived by dividing the population count grids by the land area grid and represent persons per square kilometer. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
The Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Population Density Grid estimates population per square km for the years 1990, 1995, and 2000 by 30 arc-second (1km) grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 1,000,000 national and sub-national geographic Units, is used to assign population values to grid cells. The population count grids are divided by the land area grid to produce population density grids. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).
The Crisis Mapping Toolkit (CMT) is a collection of tools for processing geospatial data (images, satellite data, etc.) into cartographic products that improve understanding of large-scale crises, such as natural disasters. The cartographic products produced by CMT include flood inundation maps, maps of damaged or destroyed structures, forest fire maps, population density estimates, etc. CMT is designed to rapidly process large-scale data using Google Earth Engine and other geospatial data systems.
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution.
Purpose: To provide estimates of population density for the years 2000, 2005, 2010, 2015, and 2020, based on counts consistent with national censuses and population registers, as raster data to facilitate data integration.
Recommended Citation(s)*: Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H49C6VHW. Accessed DAY MONTH YEAR.
The Gridded Population of the World, Version 4 (GPWv4): Population Density consists of estimates of human population density based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 12.5 million national and sub-national administrative units, is used to assign population values to 30 arc-second (~1 km) grid cells. The population density grids are derived by dividing the population count grids by the land area grids. The pixel values represent persons per square kilometer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Estimates of human population for the year 2015 by 2.5 arc-minute grid cells. 2015 global population density from CIESIN Gridded Population of the World version 4. Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4NP22DQ Accessed 5 April 2017.
Global Population of the World (GPW) translates census population data to a latitude-longitude grid so that population data may be used in cross-disciplinary studies. There are three data files with this data set for the reference years 1990 and 1995. Over 127,000 administrative units and population counts were collected and integrated from various sources to create the gridded data. In brief, GPW was created using the following steps:
* Population data were estimated for the product reference years, 1990 and 1995, either by the data source or by interpolating or extrapolating the given estimates for other years.
* Additional population estimates were created by adjusting the source population data to match UN national population estimates for the reference years.
* Borders and coastlines of the spatial data were matched to the Digital Chart of the World where appropriate and lakes from the Digital Chart of the World were added.
* The resulting data were then transformed into grids of UN-adjusted and unadjusted population counts for the reference years.
* Grids containing the area of administrative boundary data in each cell (net of lakes) were created and used with the count grids to produce population densities.
As with any global data set based on multiple data sources, the spatial and attribute precision of GPW is variable. The level of detail and accuracy, both in time and space, vary among the countries for which data were obtained.
The population density maps presented here for the UNDESERT study areas in Burkina Faso, Benin, Niger and Senegal for 1990, 2000 and 2010 were produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Centro Internacional de Agricultura Tropical (CIAT). CIESIN/CIAT population density grids are available for the entire globe at a 2.5 arc-minutes resolution (http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/sets/browse). The UNDESERT project (EU FP7 243906), financed by the European Commission, Directorate General for Research and Innovation, Environment Program, aims to improve the Understanding and Combating of Desertification to Mitigate its Impact on Ecosystem Services in West Africa. Humans originate and contribute significantly to desertification processes. Based on the CIESIN/CIAT population density grids we want to illustrate how population density changed in the UNDESERT study areas and countries during the last 20 years. Data for 1990 and 2000 were downloaded from the Gridded Population of the World, Version 3 (GPWv3) consisting of estimates of human population by 2.5 arc-minute grid cells and associated data sets dated circa 2000. Data for 2010 were copied from the Gridded Population of the World, Version 3 (GPWv3) consisting in a future estimate of human population by 2.5 arc-minute grid cells. The future estimate population values are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics.
Source: http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density. Accessed 28/10/2013 And http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid, Future Estimates. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates. Accessed 28/10/2013
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)
-Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
-Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel,
adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
The Asian administrative boundaries and population database is part of an ongoing effort to improve global, spatially referenced demographic data holdings. Such databases are useful for a variety of applications including strategic-level agricultural research and applications in the analysis of the human dimensions of global change.
This project (which has been carried out as a cooperative activity
between NCGIA, CGIAR and UNEP/GRID between Oct. 1995 and present) has
pooled available data sets, many of which had been assembled for the
global demography project. All data were checked, international
boundaries and coastlines were replaced with a standard template, the
attribute database was redesigned, and new, more reliable population
estimates for subnational units were produced for all countries. From
the resulting data sets, raster surfaces representing population
distribution and population density were created in collaboration
between NCGIA and GRID-Geneva.
Population databases are forming the backbone of many important studies modelling the complex interactions between population growth and environmental degradation, predicting the effects of global climate change on humans, and assessing the risks of various hazards such as floods, air pollution and radiation. Detailed information on population size, growth and distribution (along with many other environmental parameters) is of fundamental importance to such efforts. This database includes rural population distributions, population distrbution for cities and gridded global population distributions.
This project has provided a population database depicting the
worldwide distribution of population in a 1X1 latitude/longitude grid
system. The database is unique, firstly, in that it makes use of the
most recent data available (1990). Secondly, it offers true
apportionment for each grid cell that is, if a cell contains
populations from two different countries, each is assigned a
percentage of the grid cell area, rather than artificially assigning
the whole cell to one or the other country (this is especially
important for European countries). Thirdly, the database gives the
percentage of a country's total population accounted for in each
cell. So if a country's total in a given year around 1990 (1989 or
1991, for example) is known, then population in each cell can be
calculated by using the percentage given in the database with the
assumption that the growth rate in each cell of the country is the
same. And lastly, this dataset is easy to be updated for each country
as new national population figures become available.
As of 2025, Asia was the most densely populated region of the world, with nearly 156 inhabitants per square kilometer, whereas Oceania's population density was just over five inhabitants per square kilometer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator) -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method. -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method. Data for earlier dates is available directly from WorldPop. WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset features three gridded population dadasets of Germany on a 10m grid. The units are people per grid cell.
Datasets
DE_POP_VOLADJ16: This dataset was produced by disaggregating national census counts to 10m grid cells based on a weighted dasymetric mapping approach. A building density, building height and building type dataset were used as underlying covariates, with an adjusted volume for multi-family residential buildings.
DE_POP_TDBP: This dataset is considered a best product, based on a dasymetric mapping approach that disaggregated municipal census counts to 10m grid cells using the same three underyling covariate layers.
DE_POP_BU: This dataset is based on a bottom-up gridded population estimate. A building density, building height and building type layer were used to compute a living floor area dataset in a 10m grid. Using federal statistics on the average living floor are per capita, this bottom-up estimate was created.
Please refer to the related publication for details.
Temporal extent
The building density layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: http://doi.org/10.1594/PANGAEA.920894)
The building height layer is representative for ca. 2015 (doi: 10.5281/zenodo.4066295)
The building types layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: 10.5281/zenodo.4601219)
The underlying census data is from 2018.
Data format
The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems.
Further information
For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de).
A web-visualization of this dataset is available here.
Publication
Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044
Acknowledgements
Census data were provided by the German Federal Statistical Offices.
Funding
This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World population density by year from 1961 to 2022.