47 datasets found
  1. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  2. Population density in China 2023, by region

    • statista.com
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in China 2023, by region [Dataset]. https://www.statista.com/statistics/1183370/china-population-density-by-region-province/
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    China
    Description

    China is a vast and diverse country and population density in different regions varies greatly. In 2023, the estimated population density of the administrative area of Shanghai municipality reached about 3,922 inhabitants per square kilometer, whereas statistically only around three people were living on one square kilometer in Tibet. Population distribution in China China's population is unevenly distributed across the country: while most people are living in the southeastern half of the country, the northwestern half – which includes the provinces and autonomous regions of Tibet, Xinjiang, Qinghai, Gansu, and Inner Mongolia – is only sparsely populated. Even the inhabitants of a single province might be unequally distributed within its borders. This is significantly influenced by the geography of each region, and is especially the case in the Guangdong, Fujian, or Sichuan provinces due to their mountain ranges. The Chinese provinces with the largest absolute population size are Guangdong in the south, Shandong in the east and Henan in Central China. Urbanization and city population Urbanization is one of the main factors which have been reshaping China over the last four decades. However, when comparing the size of cities and urban population density, one has to bear in mind that data often refers to the administrative area of cities or urban units, which might be much larger than the contiguous built-up area of that city. The administrative area of Beijing municipality, for example, includes large rural districts, where only around 200 inhabitants are living per square kilometer on average, while roughly 20,000 residents per square kilometer are living in the two central city districts. This is the main reason for the huge difference in population density between the four Chinese municipalities Beijing, Tianjin, Shanghai, and Chongqing shown in many population statistics.

  3. a

    Boston Population Density

    • boston-harbor-resources-bsumaps.hub.arcgis.com
    Updated Apr 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ball State University ArcGIS Online (2021). Boston Population Density [Dataset]. https://boston-harbor-resources-bsumaps.hub.arcgis.com/maps/c41b6b075d5d4a87a1788bc21f30d38a
    Explore at:
    Dataset updated
    Apr 29, 2021
    Dataset authored and provided by
    Ball State University ArcGIS Online
    Area covered
    Description

    The population density picture of Boston is generally a story of two Bostons: the high density central and northern neighborhoods, and the low density southern neighborhoods.The highest density areas of Boston are particularly concentrated in Brighton, Allston, and the Fenway area, areas of the city with large numbers of college students and young adults. There is also high population density in areas such as the Back Bay, the South End, Charlestown, the North End, and South Boston. These are all relatively small areas geographically, but have housing stock conducive to population density (e.g. multi-family dwelling units, row housing, large apartment buildings). The southern neighborhoods, specifically Hyde Park and West Roxbury, have significant numbers of people living in them, but lots sizes tend to be much larger. These areas of the city also tend to have more single family dwelling units. In that, there are fewer people per square mile than places north in the city. Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, areas of highest density exceed 30,000 persons per square kilometer. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.How to make this map for your city

  4. Data from: Urban-rural continuum

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea Cattaneo; Andy Nelson; Theresa McMenomy (2023). Urban-rural continuum [Dataset]. http://doi.org/10.6084/m9.figshare.12579572.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Andrea Cattaneo; Andy Nelson; Theresa McMenomy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The urban–rural continuum classifies the global population, allocating rural populations around differently-sized cities. The classification is based on four dimensions: population distribution, population density, urban center location, and travel time to urban centers, all of which can be mapped globally and consistently and then aggregated as administrative unit statistics.Using spatial data, we matched all rural locations to their urban center of reference based on the time needed to reach these urban centers. A hierarchy of urban centers by population size (largest to smallest) is used to determine which center is the point of “reference” for a given rural location: proximity to a larger center “dominates” over a smaller one in the same travel time category. This was done for 7 urban categories and then aggregated, for presentation purposes, into “large cities” (over 1 million people), “intermediate cities” (250,000 –1 million), and “small cities and towns” (20,000–250,000).Finally, to reflect the diversity of population density across the urban–rural continuum, we distinguished between high-density rural areas with over 1,500 inhabitants per km2 and lower density areas. Unlike traditional functional area approaches, our approach does not define urban catchment areas by using thresholds, such as proportion of people commuting; instead, these emerge endogenously from our urban hierarchy and by calculating the shortest travel time.Urban-Rural Catchment Areas (URCA).tif is a raster dataset of the 30 urban–rural continuum categories for the urban–rural continuum showing the catchment areas around cities and towns of different sizes. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration. The raster also allows for visualizing a simplified continuum created by grouping the seven urban agglomerations into 4 categories.Urban-Rural Catchment Areas (URCA).tif is in GeoTIFF format, band interleaved with LZW compression, suitable for use in Geographic Information Systems and statistical packages. The data type is byte, with pixel values ranging from 1 to 30. The no data value is 128. It has a spatial resolution of 30 arc seconds, which is approximately 1km at the equator. The spatial reference system (projection) is EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long). The geographic extent is 83.6N - 60S / 180E - 180W. The same tif file is also available as an ESRI ArcMap MapPackage Urban-Rural Catchment Areas.mpkFurther details are in the ReadMe_data_description.docx

  5. f

    Table_1_Global city densities: Re-examining urban scaling theory.docx

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph R. Burger; Jordan G. Okie; Ian A. Hatton; Vanessa P. Weinberger; Munik Shrestha; Kyra J. Liedtke; Tam Be; Austin R. Cruz; Xiao Feng; César Hinojo-Hinojo; Abu S. M. G. Kibria; Kacey C. Ernst; Brian J. Enquist (2023). Table_1_Global city densities: Re-examining urban scaling theory.docx [Dataset]. http://doi.org/10.3389/fcosc.2022.879934.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    Frontiers
    Authors
    Joseph R. Burger; Jordan G. Okie; Ian A. Hatton; Vanessa P. Weinberger; Munik Shrestha; Kyra J. Liedtke; Tam Be; Austin R. Cruz; Xiao Feng; César Hinojo-Hinojo; Abu S. M. G. Kibria; Kacey C. Ernst; Brian J. Enquist
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Understanding scaling relations of social and environmental attributes of urban systems is necessary for effectively managing cities. Urban scaling theory (UST) has assumed that population density scales positively with city size. We present a new global analysis using a publicly available database of 933 cities from 38 countries. Our results showed that (18/38) 47% of countries analyzed supported increasing density scaling (pop ~ area) with exponents ~⅚ as UST predicts. In contrast, 17 of 38 countries (~45%) exhibited density scalings statistically indistinguishable from constant population densities across cities of varying sizes. These results were generally consistent in years spanning four decades from 1975 to 2015. Importantly, density varies by an order of magnitude between regions and countries and decreases in more developed economies. Our results (i) point to how economic and regional differences may affect the scaling of density with city size and (ii) show how understanding country- and region-specific strategies could inform effective management of urban systems for biodiversity, public health, conservation and resiliency from local to global scales.200 word statement of contribution: Urban Scaling Theory (UST) is a general scaling framework that makes quantitative predictions for how many urban attributes spanning physical, biological and social dimensions scale with city size; thus, UST has great implications in guiding future city developments. A major assumption of UST is that larger cities become denser. We evaluated this assumption using a publicly available global dataset of 933 cities in 38 countries. Our scaling analysis of population size and area of cities revealed that while many countries analyzed showed increasing densities with city size, about 45% of countries showed constant densities across cities. These results question a key assumption of UST. Our results suggest policies and management strategies for biodiversity conservation, public health and sustainability of urban systems may need to be tailored to national and regional scaling relations to be effective.

  6. Urban and Regional Migration Estimates

    • openicpsr.org
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephan Whitaker (2024). Urban and Regional Migration Estimates [Dataset]. http://doi.org/10.3886/E201260V6
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset provided by
    Federal Reserve Bank of Clevelandhttps://www.clevelandfed.org/
    Authors
    Stephan Whitaker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2010 - Mar 31, 2025
    Area covered
    Metro areas, United States, Combined Statistical Areas, Metropolitan areas
    Description

    Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also nee

  7. Urban Influence Codes

    • agdatacommons.nal.usda.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +4more
    bin
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Economic Research Service (2025). Urban Influence Codes [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Urban_Influence_Codes/25696455
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Authors
    USDA Economic Research Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The 2013 Urban Influence Codes form a classification scheme that distinguishes metropolitan counties by population size of their metro area, and nonmetropolitan counties by size of the largest city or town and proximity to metro and micropolitan areas. The standard Office of Management and Budget (OMB) metro and nonmetro categories have been subdivided into two metro and 10 nonmetro categories, resulting in a 12-part county classification. This scheme was originally developed in 1993. This scheme allows researchers to break county data into finer residential groups, beyond metro and nonmetro, particularly for the analysis of trends in nonmetro areas that are related to population density and metro influence.

    An update of the Urban Influence Codes is planned for mid-2023.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Webpage with links to Excel files For complete information, please visit https://data.gov.

  8. Highest population density by country 2024

    • statista.com
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Highest population density by country 2024 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

  9. d

    Replication Data for: Figure 1.4 Density Balance Index scores by city size...

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taylor, Zack (2023). Replication Data for: Figure 1.4 Density Balance Index scores by city size group, 1970-2010 [Dataset]. http://doi.org/10.5683/SP2/W0BBB6
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Taylor, Zack
    Description

    Script graphs box plots of DBI scores for all metro areas, grouping by year and metropolitan area population size (larger or smaller than 250,000 people). Additional scripts create different graphs. Data are provided in both "long" and "tall" formats.

  10. Estimates of the population for the UK, England, Wales, Scotland, and...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Estimates of the population for the UK, England, Wales, Scotland, and Northern Ireland [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 8, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Ireland, England, United Kingdom
    Description

    National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).

  11. Population density in China 2012-2022

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population density in China 2012-2022 [Dataset]. https://www.statista.com/statistics/270130/population-density-in-china/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    In 2022, the estimated population density of China was around 150.42 people per square kilometer. That year, China's population size declined for the first time in decades. Although China is the most populous country in the world, its overall population density is not much higher than the average population density in Asia. Uneven population distribution China is one of the largest countries in terms of land area, and its population density figures vary dramatically from region to region. Overall, the coastal regions in the East and Southeast have the highest population densities, as they belong to the more economically developed regions of the country. These coastal regions also have a higher urbanization rate. On the contrary, the regions in the West are covered with mountain landscapes which are not suitable for the development of big cities. Populous cities in China Several Chinese cities rank among the most populous cities in the world. According to estimates, Beijing and Shanghai will rank among the top ten megacities in the world by 2030. Both cities are also the largest Chinese cities in terms of land area. The previous colonial regions, Macao and Hong Kong, are two of the most densely populated cities in the world.

  12. i

    Illinois Cities by Population

    • illinois-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Illinois Cities by Population [Dataset]. https://www.illinois-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.illinois-demographics.com/terms_and_conditionshttps://www.illinois-demographics.com/terms_and_conditions

    Description

    A dataset listing Illinois cities by population for 2024.

  13. f

    Florida Cities by Population

    • florida-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Florida Cities by Population [Dataset]. https://www.florida-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions

    Area covered
    Florida City, Florida
    Description

    A dataset listing Florida cities by population for 2024.

  14. Population counts, for census metropolitan areas, census agglomerations,...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Feb 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2022). Population counts, for census metropolitan areas, census agglomerations, population centres and rural areas [Dataset]. http://doi.org/10.25318/9810000601-eng
    Explore at:
    Dataset updated
    Feb 9, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table presents the 2021 population counts for census metropolitan areas and census agglomerations, and their population centres and rural areas.

  15. m

    Maine Cities by Population

    • maine-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Maine Cities by Population [Dataset]. https://www.maine-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.maine-demographics.com/terms_and_conditionshttps://www.maine-demographics.com/terms_and_conditions

    Area covered
    Maine
    Description

    A dataset listing Maine cities by population for 2024.

  16. Population density in the UK in 2023, by region

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Population density in the UK in 2023, by region [Dataset]. https://www.statista.com/statistics/281322/population-density-in-the-uk-by-region/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United Kingdom
    Description

    As of 2023, the population density in London was by far the highest number of people per square km in the UK, at *****. Of the other regions and countries which constitute the United Kingdom, North West England was the next most densely populated area at *** people per square kilometer. Scotland, by contrast, is the most sparsely populated country or region in the United Kingdom, with only ** people per square kilometer. Countries, regions, and cities According to the official mid-year population estimate, the population of the United Kingdom was just almost **** million in 2022. Most of the population lived in England, where an estimated **** million people resided, followed by Scotland at **** million, Wales at **** million and finally Northern Ireland at just over *** million. Within England, the South East was the region with the highest population at almost **** million, followed by the London region at around *** million. In terms of urban areas, Greater London is the largest city in the United Kingdom, followed by Greater Manchester and Birmingham in the North West and West Midlands regions of England. London calling London's huge size in relation to other UK cities is also reflected by its economic performance. In 2021, London's GDP was approximately *** billion British pounds, almost a quarter of UK GDP overall. In terms of GDP per capita, Londoners had a GDP per head of ****** pounds, compared with an average of ****** for the country as a whole. Productivity, expressed as by output per hour worked, was also far higher in London than the rest of the country. In 2021, London was around **** percent more productive than the rest of the country, with South East England the only other region where productivity was higher than the national average.

  17. K

    California 2020 Projected Urban Growth

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Oct 13, 2003
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2003). California 2020 Projected Urban Growth [Dataset]. https://koordinates.com/layer/670-california-2020-projected-urban-growth/
    Explore at:
    geopackage / sqlite, mapinfo tab, kml, csv, mapinfo mif, geodatabase, dwg, pdf, shapefileAvailable download formats
    Dataset updated
    Oct 13, 2003
    Dataset authored and provided by
    State of California
    License

    https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/

    Area covered
    Description

    20 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2020.

    By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents.

    Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley.

    How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.

    These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life?

    Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.

    Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.

    This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.

  18. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  19. f

    Stratification of working zones and population counts in representative...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew D Gibson; Ian G Handel; Kate Shervell; Tarryn Roux; Dagmar Mayer; Stanford Muyila; Golden B Maruwo; Edwin M. S Nkhulungo; Rachel A Foster; Patrick Chikungwa; Bernard Chimera; Barend M.deC Bronsvoort; Richard J Mellanby; Luke Gamble (2023). Stratification of working zones and population counts in representative surveys. [Dataset]. http://doi.org/10.1371/journal.pntd.0004824.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOS Neglected Tropical Diseases
    Authors
    Andrew D Gibson; Ian G Handel; Kate Shervell; Tarryn Roux; Dagmar Mayer; Stanford Muyila; Golden B Maruwo; Edwin M. S Nkhulungo; Rachel A Foster; Patrick Chikungwa; Bernard Chimera; Barend M.deC Bronsvoort; Richard J Mellanby; Luke Gamble
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Housing category 1 (Small houses—high density), Housing category 2 (Small houses—medium density), Housing category 3 (Small houses—low density), Housing category 4 (Medium houses–ordered), Housing category 5 (Large houses—medium/low density). S1 Dataset gives the breakdown of city zones and dogs sighted by zone in surveyed regions.

  20. Data from: Commonness and ecology, but not bigger brains, predict urban...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin
    Updated May 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Svein Dale; Jan T. Lifjeld; Melissah Rowe; Svein Dale; Jan T. Lifjeld; Melissah Rowe (2022). Data from: Commonness and ecology, but not bigger brains, predict urban living in birds [Dataset]. http://doi.org/10.5061/dryad.pq6d7
    Explore at:
    binAvailable download formats
    Dataset updated
    May 29, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Svein Dale; Jan T. Lifjeld; Melissah Rowe; Svein Dale; Jan T. Lifjeld; Melissah Rowe
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Background: Several life history and ecological variables have been reported to affect the likelihood of species becoming urbanized. Recently, studies have also focused on the role of brain size in explaining ability to adapt to urban environments. In contrast, however, little is known about the effect of colonization pressure from surrounding areas, which may confound conclusions about what makes a species urban. We recorded presence/absence data for birds in 93 urban sites in Oslo (Norway) and compared these with species lists generated from 137 forest and 51 farmland sites surrounding Oslo which may represent source populations for colonization. Results: We found that the frequency (proportion of sites where present) of a species within the city was strongly and positively associated with its frequency in sites surrounding the city, as were both species breeding habitat and nest site location. In contrast, there were generally no significant effects of relative brain mass or migration on urban occupancy. Furthermore, analyses of previously published data showed that urban density of birds in six other European cities was also positively and significantly associated with density in areas outside cities, whereas relative brain mass showed no such relationship. Conclusions: These results suggest that urban bird communities are primarily determined by how frequently species occurred in the surrounding landscapes and by features of ecology (i.e. breeding habitat and nest site location), whereas species' relative brain mass had no significant effects.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
Organization logo

Population density in the U.S. 2023, by state

Explore at:
26 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 3, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
United States
Description

In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

Search
Clear search
Close search
Google apps
Main menu