94 datasets found
  1. Population density in New York 1960-2018

    • statista.com
    Updated Dec 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2019). Population density in New York 1960-2018 [Dataset]. https://www.statista.com/statistics/304695/new-york-population-density/
    Explore at:
    Dataset updated
    Dec 15, 2019
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States, New York
    Description

    This graph shows the population density in the federal state of New York from 1960 to 2018. In 2018, the population density of New York stood at 414.7 residents per square mile of land area.

  2. N

    New York City Population By Neighborhood Tabulation Areas

    • data.cityofnewyork.us
    • nycopendata.socrata.com
    • +4more
    csv, xlsx, xml
    Updated Jun 26, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2013). New York City Population By Neighborhood Tabulation Areas [Dataset]. https://data.cityofnewyork.us/City-Government/New-York-City-Population-By-Neighborhood-Tabulatio/swpk-hqdp
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Jun 26, 2013
    Dataset authored and provided by
    Department of City Planning (DCP)
    Area covered
    New York
    Description

    Population Numbers By New York City Neighborhood Tabulation Areas

    The data was collected from Census Bureaus' Decennial data dissemination (SF1). Neighborhood Tabulation Areas (NTAs), are aggregations of census tracts that are subsets of New York City's 55 Public Use Microdata Areas (PUMAs). Primarily due to these constraints, NTA boundaries and their associated names may not definitively represent neighborhoods. This report shows change in population from 2000 to 2010 for each NTA. Compiled by the Population Division – New York City Department of City Planning.

  3. N

    New York City Population by Borough, 1950 - 2040

    • data.cityofnewyork.us
    • data.ny.gov
    • +3more
    csv, xlsx, xml
    Updated Apr 29, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2014). New York City Population by Borough, 1950 - 2040 [Dataset]. https://data.cityofnewyork.us/City-Government/New-York-City-Population-by-Borough-1950-2040/xywu-7bv9
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Apr 29, 2014
    Dataset authored and provided by
    Department of City Planning (DCP)
    Area covered
    New York
    Description

    Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.

  4. Population density in the U.S. 2023, by state

    • statista.com
    • akomarchitects.com
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Sep 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  5. Codes

    • figshare.com
    zip
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven Rubinyi (2020). Codes [Dataset]. http://doi.org/10.6084/m9.figshare.10262501.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 2, 2020
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Steven Rubinyi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The codes attached are used to support our study. Each of these codes is exported from ArcMap where they were constructed using ModelBuilder.Our study area focuses on New York City, which provides a data-rich urban environment with extreme variations in local population density and diverse types of input data in which to construct multiple methods. In this study area we can then compare the efficacy of multiple methodologies, which employ a strong binary mask paired with a density variable directly derived from the binary mask. We test the following methodologies:

    1. Land areas binary mask

    2. Building footprint binary mask

    3. Building footprint binary mask and area density variable

    4. Building footprints binary mask and volume density variable

    5. Residential building footprint binary mask

    6. Residential building footprint binary mask and area density variable

    7. Residential building footprint binary mask and volume density variable

  6. NYC Population By Community Districts

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). NYC Population By Community Districts [Dataset]. https://www.johnsnowlabs.com/marketplace/nyc-population-by-community-districts/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Time period covered
    1970 - 2010
    Area covered
    New York
    Description

    This dataset contains the New York City Population By Community Districts.The community boards of the New York City government are the appointed advisory groups of the community districts of the five boroughs. There are currently 59 community districts, including twelve in Manhattan, twelve in the Bronx, eighteen in Brooklyn, fourteen in Queens, and three in Staten Island.

  7. Census Block Error Tables, Map Document, Geodatabase, Model Toolkit, and...

    • figshare.com
    zip
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven Rubinyi (2020). Census Block Error Tables, Map Document, Geodatabase, Model Toolkit, and Codes [Dataset]. http://doi.org/10.6084/m9.figshare.11444808.v6
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 2, 2020
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Steven Rubinyi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Includes the error tables, ESRI ArcMap document, accompanying ESRI Geodatabase, ESRI Toolkit and the Python scripts/codes used in the analysis. The error tables are by Census Block for each tested method as well as the calculated grouped error statistics.Our study area focuses on New York City, which provides a data-rich urban environment with extreme variations in local population density and diverse types of input data in which to construct multiple methods. In this study area we can then compare the efficacy of multiple methodologies, which employ a strong binary mask paired with a density variable directly derived from the binary mask. We test the following methodologies:1. Land areas binary mask2. Building footprint binary mask3. Building footprint binary mask and area density variable4. Building footprints binary mask and volume density variable5. Residential building footprint binary mask6. Residential building footprint binary mask and area density variable7. Residential building footprint binary mask and volume density variable

  8. TIGER/Line Shapefile, Current, State, New York, Census Tract

    • catalog.data.gov
    Updated Aug 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2025). TIGER/Line Shapefile, Current, State, New York, Census Tract [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-current-state-new-york-census-tract
    Explore at:
    Dataset updated
    Aug 9, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    New York
    Description

    This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined because of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard Census Bureau geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous.

  9. TIGER/Line Shapefile, 2022, State, New York, NY, Census Tract

    • catalog.data.gov
    Updated Jan 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2022, State, New York, NY, Census Tract [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2022-state-new-york-ny-census-tract
    Explore at:
    Dataset updated
    Jan 28, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    New York
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  10. Data from: Harvard Forest site, station New York County, NY (FIPS 36061),...

    • search.dataone.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nichole Rosamilia; Ted Gragson; U.S. Bureau of the Census; Inter-University Consortium for Political and Social Research; Christopher Boone; Michael R. Haines; EcoTrends Project (2015). Harvard Forest site, station New York County, NY (FIPS 36061), study of human population density in units of numberPerKilometerSquared on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F8467%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Nichole Rosamilia; Ted Gragson; U.S. Bureau of the Census; Inter-University Consortium for Political and Social Research; Christopher Boone; Michael R. Haines; EcoTrends Project
    Time period covered
    Jan 1, 1880 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Harvard Forest (HFR) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.

  11. Data from: Harvard Forest site, station New York County, NY (FIPS 36061),...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-University Consortium for Political and Social Research; U.S. Bureau of the Census; Christopher Boone; Ted Gragson; Michael R. Haines; Nichole Rosamilia; EcoTrends Project (2015). Harvard Forest site, station New York County, NY (FIPS 36061), study of percent urban population in units of percent on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F8466%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Inter-University Consortium for Political and Social Research; U.S. Bureau of the Census; Christopher Boone; Ted Gragson; Michael R. Haines; Nichole Rosamilia; EcoTrends Project
    Time period covered
    Jan 1, 1790 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Harvard Forest (HFR) contains percent urban population measurements in percent units and were aggregated to a yearly timescale.

  12. N

    2020 Census Tracts

    • data.cityofnewyork.us
    • s.cnmilf.com
    • +2more
    Updated Nov 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2025). 2020 Census Tracts [Dataset]. https://data.cityofnewyork.us/City-Government/2020-Census-Tracts/63ge-mke6
    Explore at:
    csv, xlsx, kmz, kml, xml, application/geo+jsonAvailable download formats
    Dataset updated
    Nov 24, 2025
    Dataset authored and provided by
    Department of City Planning (DCP)
    Description

    Census Tracts from the 2020 US Census for New York City clipped to the shoreline. These boundary files are derived from the US Census Bureau's TIGER project and have been geographically modified to fit the New York City base map. Because some census tracts are under water not all census tracts are contained in this file, only census tracts that are partially or totally located on land have been mapped in this file.

    All previously released versions of this data are available on the DCP Website: BYTES of the BIG APPLE. Current version: 25d

  13. DataSheet1_Revealing Critical Characteristics of Mobility Patterns in New...

    • frontiersin.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akhil Anil Rajput; Qingchun Li; Xinyu Gao; Ali Mostafavi (2023). DataSheet1_Revealing Critical Characteristics of Mobility Patterns in New York City During the Onset of COVID-19 Pandemic.docx [Dataset]. http://doi.org/10.3389/fbuil.2021.654409.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Akhil Anil Rajput; Qingchun Li; Xinyu Gao; Ali Mostafavi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough movement for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in people’s mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies.

  14. Enriched NYTimes COVID19 U.S. County Dataset

    • kaggle.com
    zip
    Updated Jun 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ringhilterra17 (2020). Enriched NYTimes COVID19 U.S. County Dataset [Dataset]. https://www.kaggle.com/ringhilterra17/enrichednytimescovid19
    Explore at:
    zip(11291611 bytes)Available download formats
    Dataset updated
    Jun 14, 2020
    Authors
    ringhilterra17
    License

    Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Overview and Inspiration

    I wanted to make some geospatial visualizations to convey the current severity of COVID19 in different parts of the U.S..

    I liked the NYTimes COVID dataset, but it was lacking information on county boundary shape data, population per county, new cases / deaths per day, and per capita calculations, and county demographics.

    After a lot of work tracking down the different data sources I wanted and doing all of the data wrangling and joins in python, I wanted to open-source the final enriched data set in order to give others a head start in their COVID-19 related analytic, modeling, and visualization efforts.

    This dataset is enriched with county shapes, county center point coordinates, 2019 census population estimates, county population densities, cases and deaths per capita, and calculated per day cases / deaths metrics. It contains daily data per county back to January, allowing for analyizng changes over time.

    UPDATE: I have also included demographic information per county, including ages, races, and gender breakdown. This could help determine which counties are most susceptible to an outbreak.

    How this data can be used

    Geospatial analysis and visualization - Which counties are currently getting hit the hardest (per capita and totals)? - What patterns are there in the spread of the virus across counties? (network based spread simulations using county center lat / lons) -county population densities play a role in how quickly the virus spreads? -how does a specific county/state cases and deaths compare to other counties/states? Join with other county level datasets easily (with fips code column)

    Content Details

    See the column descriptions for more details on the dataset

    Visualizations and Analysis Examples

    COVID-19 U.S. Time-lapse: Confirmed Cases per County (per capita)

    https://github.com/ringhilterra/enriched-covid19-data/blob/master/example_viz/covid-cases-final-04-06.gif?raw=true" alt="">-

    Other Data Notes

    • Please review nytimes README for detailed notes on Covid-19 data - https://github.com/nytimes/covid-19-data/
    • The only update I made in regards to 'Geographic Exceptions', is that I took 'New York City' county provided in the Covid-19 data, which has all cases for 'for the five boroughs of New York City (New York, Kings, Queens, Bronx and Richmond counties) and replaced the missing FIPS for those rows with the 'New York County' fips code 36061. That way I could join to a geometry, and then I used the sum of those five boroughs population estimates for the 'New York City' estimate, which allowed me calculate 'per capita' metrics for 'New York City' entries in the Covid-19 dataset

    Acknowledgements

  15. Summary of features and their statistics (i.e., mean, standard deviation...

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Satyaki Roy; Preetam Ghosh (2023). Summary of features and their statistics (i.e., mean, standard deviation (dev.), maximum (max.) and minimum (min.)). [Dataset]. http://doi.org/10.1371/journal.pone.0241165.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Satyaki Roy; Preetam Ghosh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The features in the order shown under “Feature name” are: GDP, inter-state distance based on lat-long coordinates, gender, ethnicity, quality of health care facility, number of homeless people, total infected and death, population density, airport passenger traffic, age group, days for infection and death to peak, number of people tested for COVID-19, days elapsed between first reported infection and the imposition of lockdown measures at a given state.

  16. N

    Modified Zip Code Tabulation Areas (MODZCTA)

    • data.cityofnewyork.us
    • catalog.data.gov
    Updated May 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Mental Hygiene (DOHMH) (2020). Modified Zip Code Tabulation Areas (MODZCTA) [Dataset]. https://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk
    Explore at:
    xml, xlsx, csv, kmz, application/geo+json, kmlAvailable download formats
    Dataset updated
    May 13, 2020
    Dataset authored and provided by
    Department of Health and Mental Hygiene (DOHMH)
    Description

    A shapefile for mapping data by Modified Zip Code Tabulation Areas (MODZCTA) in NYC, based on the 2010 Census ZCTA shapefile. MODZCTA are being used by the NYC Department of Health & Mental Hygiene (DOHMH) for mapping COVID-19 Data.

  17. 2022 Cartographic Boundary File (SHP), Current Census Tract for New York,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2022 Cartographic Boundary File (SHP), Current Census Tract for New York, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2022-cartographic-boundary-file-shp-current-census-tract-for-new-york-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    New York
    Description

    The 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  18. Most populated U.S. cities in 2022

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Most populated U.S. cities in 2022 [Dataset]. https://www.statista.com/statistics/205589/top-20-cities-in-the-us-with-the-highest-resident-population/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the top 25 cities in the United States with the highest resident population as of July 1, 2022. There were about 8.34 million people living in New York City as of July 2022.

  19. A comparison of three city types.

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Yinger (2023). A comparison of three city types. [Dataset]. http://doi.org/10.1371/journal.pone.0244331.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    John Yinger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A comparison of three city types.

  20. f

    Multiple linear regression table with R2, coefficient and p value for input...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Satyaki Roy; Preetam Ghosh (2023). Multiple linear regression table with R2, coefficient and p value for input features (population density, normalized busy airport, pre-infected count, pre-death count) and observed factors (post-infected count and post-death count). [Dataset]. http://doi.org/10.1371/journal.pone.0241165.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Satyaki Roy; Preetam Ghosh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Multiple linear regression table with R2, coefficient and p value for input features (population density, normalized busy airport, pre-infected count, pre-death count) and observed factors (post-infected count and post-death count).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2019). Population density in New York 1960-2018 [Dataset]. https://www.statista.com/statistics/304695/new-york-population-density/
Organization logo

Population density in New York 1960-2018

Explore at:
Dataset updated
Dec 15, 2019
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States, New York
Description

This graph shows the population density in the federal state of New York from 1960 to 2018. In 2018, the population density of New York stood at 414.7 residents per square mile of land area.

Search
Clear search
Close search
Google apps
Main menu