This graph shows the population density in the federal state of New York from 1960 to 2018. In 2018, the population density of New York stood at 414.7 residents per square mile of land area.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
https://www.newyork-demographics.com/terms_and_conditionshttps://www.newyork-demographics.com/terms_and_conditions
A dataset listing New York cities by population for 2024.
The 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository includes:1. RData file that includes two data sets: (a) Data with all United State counties (n=3,221) (b) Data with United State counties with greater than 25 COVID-19 cases at the end of the exponential growth period (n=1,151)2. R code script to run the main and sensitivity analysis of the studyWork described in:Sy KTL, White LF, Nichols BE. Population density and basic reproductive number of COVID-19 across United States counties. Under Review, 2020.Original Data Sources:New York Times. Coronavirus (Covid-19) Data in the United States - https://github.com/nytimes/covid-19-data/blob/master/us-counties.csv
California was the state with the highest resident population in the United States in 2024, with 39.43 million people. Wyoming had the lowest population with about 590,000 residents. Living the American Dream Ever since the opening of the West in the United States, California has represented the American Dream for both Americans and immigrants to the U.S. The warm weather, appeal of Hollywood and Silicon Valley, as well as cities that stick in the imagination such as San Francisco and Los Angeles, help to encourage people to move to California. Californian demographics California is an extremely diverse state, as no one ethnicity is in the majority. Additionally, it has the highest percentage of foreign-born residents in the United States. By 2040, the population of California is expected to increase by almost 10 million residents, which goes to show that its appeal, both in reality and the imagination, is going nowhere fast.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The features in the order shown under “Feature name” are: GDP, inter-state distance based on lat-long coordinates, gender, ethnicity, quality of health care facility, number of homeless people, total infected and death, population density, airport passenger traffic, age group, days for infection and death to peak, number of people tested for COVID-19, days elapsed between first reported infection and the imposition of lockdown measures at a given state.
The Family Violence Prevention and Services Act of 1984 (FVPSA) provided funding, through the Office of Victims of Crime in the United States Department of Justice, for 23 law enforcement training projects across the nation from 1986 to 1992. FVPSA was enacted to assist states in (1) developing and maintaining programs for the prevention of family violence and for the provision of shelter to victims and their dependents and (2) providing training and technical assistance for personnel who provide services for victims of family violence. The National Institute of Justice awarded a grant to the Urban Institute in late 1992 to evaluate the police training projects. One of the program evaluation methods the Urban Institute used was to conduct surveys of victims in New York and Texas. The primary objectives of the survey were to find out, from victims who had contact with law enforcement officers in the pre-training period and/or in the post-training period, what their experiences and evaluations of law enforcement services were, how police interventions had changed over time, and how the quality of services and changes related to the police training funded under the FVPSA. Following the conclusion of training, victims of domestic assault in New York and Texas were surveyed through victim service programs across each state. Similar, but not identical, instruments were used at the two sites. Service providers were asked to distribute the questionnaires to victims of physical or sexual abuse who had contact with law enforcement officers. The survey instruments were developed to obtain information and victim perceptions of the following key subject areas: history of abuse, characteristics of the victim-abuser relationship, demographic characteristics of the abuser and the victim, history of law enforcement contacts, services received from law enforcement officers, and victims' evaluations of these services. Variables on history of abuse include types of abuse experienced, first and last time physically or sexually abused, and frequency of abuse. Characteristics of the victim-abuser relationship include length of involvement with the abuser, living arrangement and relationship status at time of last abuse, number of children the victim had, and number of children at home at the time of last abuse. Demographic variables provide age, race/ethnicity, employment status, and education level of the abuser and the victim. Variables on the history of law enforcement contacts and services received include number of times law enforcement officers were called because of assaults on the victim, number of times law enforcement officers actually came to the scene, first and last time officers came to the scene, number of times officers were involved because of assaults on the victim, number of times officers were involved in the last 12 months, and type of law enforcement agencies the officers were from. Data are also included on city size by population, city median household income, county population density, county crime rate, and region of state of the responding law enforcement agencies. Over 30 variables record the victims' evaluations of the officers' responsiveness, helpfulness, and attitudes.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The United States senior living market, valued at $112.93 billion in 2025, is projected to experience robust growth, driven by several key factors. The aging population, coupled with increasing life expectancy and a rising prevalence of chronic health conditions requiring assisted care, are significant contributors to market expansion. Technological advancements in senior care, such as telehealth and remote monitoring, are also fueling demand for innovative and efficient senior living solutions. Furthermore, a shift in preferences towards independent living options that provide a sense of community and support, as opposed to solely relying on family caregivers, is boosting market growth. The segment breakdown reveals a diversified market with Assisted Living, Independent Living, and Memory Care facilities leading the way. Key states like New York, Illinois, California, North Carolina, and Washington represent significant regional concentrations, reflecting population density and economic factors. The competitive landscape includes both large national players like Brookdale Senior Living and Sunrise Senior Living, as well as smaller regional providers, indicating a dynamic and evolving market structure. The projected Compound Annual Growth Rate (CAGR) of 5.86% from 2025 to 2033 indicates a significant expansion of the market over the forecast period. However, several factors could influence this trajectory. Rising healthcare costs and potential regulatory changes related to senior care could pose challenges. Additionally, maintaining staffing levels within the industry, addressing workforce shortages, and ensuring quality care will be crucial for sustained growth. Despite these challenges, the fundamental demographic trends point toward a consistently growing market. Strategic investments in infrastructure, technology, and workforce development will be critical for operators to capitalize on opportunities within the expanding senior living sector. Recent developments include: July 2023: Spring Cypress senior living site expansion is set to open at the end of 2024 and will consist of three phases. The first phase of the expansion will include 19 independent-living, two-bedroom cottages. The second phase will include 24 townhomes. The third phase will feature 95 apartments. The final phase will feature a resort with several luxury amenities., Apr 2023: For seniors looking for innovative, high-quality care, Avista Senior Living is transitioning away from its SafelyYou partnership to empower safer, more personalized dementia care with real-time, AI video and remote clinical experts 24/7.. Key drivers for this market are: 4., Increase in Aging Population Driving the Market4.; Healthcare and Long-term Care Needs Driving the Market. Potential restraints include: 4., Increase in Aging Population Driving the Market4.; Healthcare and Long-term Care Needs Driving the Market. Notable trends are: Senior Housing Witnessing Increased Demand.
The 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The 2016 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.
The records in this file allow users to map the parts of Urban Areas that overlap a particular county.
After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes.
The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.
The generalized boundaries for counties and equivalent entities are as of January 1, 2010.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Characterizing the population density of species is a central interest in ecology. Eastern North America is the global hotspot for biodiversity of plethodontid salamanders, an inconspicuous component of terrestrial vertebrate communities, and among the most widespread is the eastern red-backed salamander, Plethodon cinereus. Previous work suggests population densities are high with significant geographic variation, but comparisons among locations are challenged by lack of standardization and failure to accommodate imperfect detection. We present results from a range-wide monitoring network that accounts for detection uncertainty using systematic survey protocols and robust quantitative models. We analyzed mark-recapture data from 19 study areas across the range. Estimated salamander densities ranged from 1950 to 34300 salamanders/ha, with a median of 9965 salamanders/ha. We compare these results to previous estimates for P. cinereus and other abundant terrestrial vertebrates. We demonstrate that overall biomass of P. cinereus, a secondary consumer, is of similar or greater magnitude to widespread primary consumers such as white-tailed deer and Peromyscus mice, and 2-3 orders of magnitude greater than common high-biomass omnivorous species and other secondary consumer species. Our results add empirical evidence that P. cinereus specifically, and amphibians in general, are an outsized component of terrestrial vertebrate communities in temperate ecosystems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionTo sustain black bear (Ursus americanus) populations, wildlife managers should understand the coupled socio-ecological systems that influence acceptance capacity for bears.MethodIn a study area encompassing a portion of New York State, we spatially matched datasets from three sources: human-bear conflict reports between 2006 and 2018, estimates of local bear density in 2017–2018, and responses to a 2018 property owner survey (n=1,772). We used structural equation modeling to test hypothesized relationships between local human-bear conflict, local bear density, and psychological variables. ResultsThe final model explained 57% of the variance in acceptance. The effect of bear population density on acceptance capacity for bears was relatively small and was mediated by a third variable: perception of proximity to the effects of human-bear interactions. The variables that exerted a direct effect on acceptance were perception of bear-related benefits, perception of bear-related risks, perceived proximity to effects of human-bear interactions, and being a hunter. Perception of bear-related benefits had a greater effect on acceptance than perception of bear-related risks. Perceived proximity to effects of human-bear interactions was affected by local bear density, but also was affected by social trust. Increased social trust had nearly the same effect on perceived proximity as decreased bear density. Social trust had the greatest indirect effect on acceptance of any variable in the model. DiscussionFindings suggest wildlife agencies could maintain public acceptance for bears through an integrated approach that combines actions to address bear-related perceptions and social trust along with active management of bear populations.
description: This shapefile contains landscape factors representing human disturbances summarized to local and network catchments of river reaches for the state of New York. This dataset is the result of clipping the feature class 'NFHAP 2010 HCI Scores and Human Disturbance Data for the Conterminous United States linked to NHDPLUSV1.gdb' to the state boundary of New York. Landscape factors include land uses, population density, roads, dams, mines, and point-source pollution sites. The source datasets that were compiled and attributed to catchments were identified as being: (1) meaningful for assessing fish habitat; (2) consistent across the entire study area in the way that they were assembled; (3) representative of conditions in the past 10 years, and (4) of sufficient spatial resolution that they could be used to make valid comparisons among local catchment units. In this data set, these variables are linked to the catchments of the National Hydrography Dataset Plus Version 1 (NHDPlusV1) using the COMID identifier. They can also be linked to the reaches of the NHDPlusV1 using the COMID identifier. Catchment attributes are available for both local catchments (defined as the land area draining directly to a reach; attributes begin with "L_" prefix) and network catchments (defined by all upstream contributing catchments to the reach's outlet, including the reach's own local catchment; attributes begin with "N_" prefix). This shapefile also includes habitat condition scores created based on responsiveness of biological metrics to anthropogenic landscape disturbances throughout ecoregions. Separate scores were created by considering disturbances within local catchments, network catchments, and a cumulative score that accounted for the most limiting disturbance operating on a given biological metric in either local or network catchments. This assessment only scored reaches representing streams and rivers (see the process section for more details). Please use the following citation: Esselman, P., D.M. Infante, L. Wang, W. Taylor, W. Daniel, R. Tingley, J. Fenner, A. Cooper, D. Wieferich, D. Thornbrugh and J. Ross. (April 2011) National Fish Habitat Action Plan (NFHAP) 2010 HCI Scores and Human Disturbance Data (linked to NHDPLUSV1) for New York. National Fish Habitat Partnership Data System. http://dx.doi.org/doi:10.5066/F7610X91; abstract: This shapefile contains landscape factors representing human disturbances summarized to local and network catchments of river reaches for the state of New York. This dataset is the result of clipping the feature class 'NFHAP 2010 HCI Scores and Human Disturbance Data for the Conterminous United States linked to NHDPLUSV1.gdb' to the state boundary of New York. Landscape factors include land uses, population density, roads, dams, mines, and point-source pollution sites. The source datasets that were compiled and attributed to catchments were identified as being: (1) meaningful for assessing fish habitat; (2) consistent across the entire study area in the way that they were assembled; (3) representative of conditions in the past 10 years, and (4) of sufficient spatial resolution that they could be used to make valid comparisons among local catchment units. In this data set, these variables are linked to the catchments of the National Hydrography Dataset Plus Version 1 (NHDPlusV1) using the COMID identifier. They can also be linked to the reaches of the NHDPlusV1 using the COMID identifier. Catchment attributes are available for both local catchments (defined as the land area draining directly to a reach; attributes begin with "L_" prefix) and network catchments (defined by all upstream contributing catchments to the reach's outlet, including the reach's own local catchment; attributes begin with "N_" prefix). This shapefile also includes habitat condition scores created based on responsiveness of biological metrics to anthropogenic landscape disturbances throughout ecoregions. Separate scores were created by considering disturbances within local catchments, network catchments, and a cumulative score that accounted for the most limiting disturbance operating on a given biological metric in either local or network catchments. This assessment only scored reaches representing streams and rivers (see the process section for more details). Please use the following citation: Esselman, P., D.M. Infante, L. Wang, W. Taylor, W. Daniel, R. Tingley, J. Fenner, A. Cooper, D. Wieferich, D. Thornbrugh and J. Ross. (April 2011) National Fish Habitat Action Plan (NFHAP) 2010 HCI Scores and Human Disturbance Data (linked to NHDPLUSV1) for New York. National Fish Habitat Partnership Data System. http://dx.doi.org/doi:10.5066/F7610X91
This dataset provides the results from collecting and testing adult deer ticks, also known as blacklegged ticks, or by their scientific name Ixodes scapularis. Collection and testing take place across New York State (excluding New York City) from October to December, when adult deer ticks are most commonly seen.
Adult deer ticks are individually tested for different bacteria and parasites, which includes the bacteria responsible for Lyme disease. These data should simply be used to educate people that there is a risk of coming in contact with ticks and tick-borne diseases.
These data only provide adult tick infections at a precise location and at one point in time. Both measures, tick population density and percentage, of ticks infected with the specified bacteria or parasite can vary greatly within a very small area and within a county. These data should not be used to broadly predict disease risk for a county.
Further below on this page you can find links to tick prevention tips, a video on how to safely remove a tick, and more datasets with tick testing results. Interactive charts and maps provide an easier way to view the data.
This dataset provides the results from collecting and testing nymph deer ticks, also known as blacklegged ticks, or by their scientific name Ixodes scapularis. Collection and testing take place across New York State (excluding New York City) from May to September, when nymph deer ticks are most commonly seen.
Nymph deer ticks are individually tested for different bacteria and parasites, which includes the bacteria responsible for Lyme disease. These data should simply be used to educate people that there is a risk of coming in contact with ticks and tick-borne diseases.
These data only provide nymph tick infections at a precise location and at one point in time. Both measures, tick population density and percentage, of ticks infected with the specified bacteria or parasite can vary greatly within a very small area and within a county. These data should not be used to broadly predict disease risk for a county.
Further below on this page you can find links to tick prevention tips, a video on how to safely remove a tick, and more datasets with tick testing results. Interactive charts and maps provide an easier way to view the data.
The 2019 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.
This graph shows the population density in the federal state of New York from 1960 to 2018. In 2018, the population density of New York stood at 414.7 residents per square mile of land area.