100+ datasets found
  1. Cities with the highest population density globally 2025

    • statista.com
    Updated Oct 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with the highest population density globally 2025 [Dataset]. https://www.statista.com/statistics/1237290/cities-highest-population-density/
    Explore at:
    Dataset updated
    Oct 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    Mogadishu in Somalia led the ranking of cities with the highest population density in 2025, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.

  2. Italian cities with the highest population density 2025

    • statista.com
    Updated Sep 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Italian cities with the highest population density 2025 [Dataset]. https://www.statista.com/statistics/1128344/italian-cities-with-the-highest-population-density/
    Explore at:
    Dataset updated
    Sep 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Italy
    Description

    Naples is the Italian city with the highest population density. As of 2025, the largest south Italian city counts 7,780 inhabitants per square kilometer. Milan followed with around 7,500 residents per square kilometer, whereas Rome, the largest Italian city, registered a population density of only 2,135 people, 5,645 inhabitants per square kilometer less than Naples.

  3. Cities with the highest population density in Latin America 2023

    • tokrwards.com
    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with the highest population density in Latin America 2023 [Dataset]. https://tokrwards.com/?_=%2Fstatistics%2F1473796%2Fcities-highest-population-density-latam%2F%23D%2FIbH0PhabzN99vNwgDeng71Gw4euCn%2B
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Latin America, Americas
    Description

    As of 2023, the top five most densely populated cities in Latin America and the Caribbean were in Colombia. The capital, Bogotá, ranked first with over ****** inhabitants per square kilometer.

  4. Highest population density by country 2024

    • statista.com
    • thefarmdosupply.com
    • +1more
    Updated Oct 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Highest population density by country 2024 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
    Explore at:
    Dataset updated
    Oct 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

  5. Global City Population Estimates - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Mar 23, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2017). Global City Population Estimates - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/global-city-population-estimates
    Explore at:
    Dataset updated
    Mar 23, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Population of Urban Agglomerations with 300,000 Inhabitants or more in 2014, by city, 1950-2030 (thousands). Data for 1,692 cities contained in the Excel file. Note: Each country has its own definition of what is 'urban' and therefore use exercise caution when comparing cities in different countries. Data available from the United Nations, Department of Economic and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision, CD-ROM Edition. Further detail of population estimates, land area, and population density for world urban areas with over 500,000 people (924 areas) is available with Demographia's World Urban Areas report (2014). Much of this data is based on the UN urban agglomerations, though a range of other sources are also used.

  6. Covid-19 Highest City Population Density

    • kaggle.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lookfwd (2020). Covid-19 Highest City Population Density [Dataset]. https://www.kaggle.com/lookfwd/covid19highestcitypopulationdensity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 25, 2020
    Dataset provided by
    Kaggle
    Authors
    lookfwd
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel

    Content

    There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.

    Acknowledgements

    Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.

    Inspiration

    Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.

    After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.

    The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">

    My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.

    Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.

    We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.

  7. a

    Population Density (1 kilometer)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jun 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Population Density (1 kilometer) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/a0f3ad34d5ac48d1aa6a2c7fcfcefbbc
    Explore at:
    Dataset updated
    Jun 20, 2023
    Dataset authored and provided by
    MapMaker
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    In the last century, the global population has increased by billions of people. And it is still growing. Job opportunities in large cities have caused an influx of people to these already packed locations. This has resulted in an increase in population density for these cities, which are now forced to expand in order to accommodate the growing population. Population density is the average number of people per unit, usually miles or kilometers, of land area. Understanding and mapping population density is important. Experts can use this information to inform decisions around resource allocation, natural disaster relief, and new infrastructure projects. Infectious disease scientists use these maps to understand the spread of infectious disease, a topic that has become critical after the COVID-19 global pandemic.While a useful tool for decision and policymakers, it is important to understand the limitations of population density. Population density is most effective in small scale places—cities or neighborhoods—where people are evenly distributed. Whereas at a larger scale, such as the state, region, or province level, population density could vary widely as it includes a mix of urban, suburban, and rural places. All of these areas have a vastly different population density, but they are averaged together. This means urban areas could appear to have fewer people than they really do, while rural areas would seem to have more. Use this map to explore the estimated global population density (people per square kilometer) in 2020. Where do people tend to live? Why might they choose those places? Do you live in a place with a high population density or a low one?

  8. "🌍 Ultimate Geographic Data"

    • kaggle.com
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laiba Asim (2025). "🌍 Ultimate Geographic Data" [Dataset]. https://www.kaggle.com/datasets/laibaasim/ultimate-geographic-data/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 5, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Laiba Asim
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    🌍 Ultimate Geographic Data Collection | Cities & Zip Codes

    📌 Overview

    Welcome to the Ultimate Geographic Data Collection, a comprehensive dataset providing valuable geographic insights. This dataset includes U.S. Zip Codes, U.S. Cities, and World Cities data, making it an essential resource for developers, data analysts, and researchers. Whether you're building location-based applications, conducting geographic analysis, or working on machine learning projects, this dataset offers an extensive and curated collection of location-based information.

    📊 What's Inside?

    • U.S. Zip Codes Database (Free Version) 🏙️

      • Includes ZIP codes, state associations, and geographic coordinates.
      • 🔗 Usage Condition: Requires a visible backlink to SimpleMaps US Zip Code Database.
    • U.S. Cities Database (Free Version) 🌆

      • Includes city names, state information, latitude, longitude, and population data.
      • 🔗 Usage Condition: Requires a visible backlink to SimpleMaps US Cities Database.
    • Basic World Cities Database 🗺️

      • Provides global city data licensed under Creative Commons Attribution 4.0.
      • 📜 Learn more: CC BY 4.0 License.
    • Comprehensive & Pro World Cities Database (Density Data) 🌎

      • Population density estimates sourced from CIESIN - Columbia University.
      • 🔗 Licensed under Creative Commons Attribution 4.0 with no additional restrictions.

    ⚖️ License & Usage Terms

    • You CAN:

      • Use this dataset in private and public-facing applications.
      • Create copies and backups for your projects.
      • Transfer the license (with provider approval via email).
    • 🚫 You CANNOT:

      • Redistribute the dataset publicly without written permission.
      • Use it in a way that violates any laws.
      • Bypass the backlink requirement (for free U.S. Zip Code & Cities Databases).

    🛠️ How to Use

    1. Download the dataset 📥.
    2. Ensure compliance with licensing terms.
    3. Use it in your projects for analysis, visualization, or machine learning.
    4. Provide attribution (if applicable) for free datasets.

    ⚠️ Disclaimer

    • This dataset is provided "AS IS", without any warranties.
    • The provider is not liable for any issues arising from usage.
    • Users are responsible for ensuring legal compliance in their jurisdiction.

    🔥 Get Started!

    Enhance your geographic projects with this powerful dataset today! 🚀

    📩 For any inquiries, licensing requests, or attribution clarifications, contact the dataset provider.

  9. Population density in China 2012-2022

    • tokrwards.com
    • thefarmdosupply.com
    • +1more
    Updated Feb 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Population density in China 2012-2022 [Dataset]. https://tokrwards.com/?_=%2Ftopics%2F1276%2Fpopulation-in-china%2F%23D%2FIbH0Phabzc8oKQxRXLgxTyDkFTtCs%3D
    Explore at:
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    China
    Description

    In 2022, the estimated population density of China was around 150.42 people per square kilometer. That year, China's population size declined for the first time in decades. Although China is the most populous country in the world, its overall population density is not much higher than the average population density in Asia. Uneven population distribution China is one of the largest countries in terms of land area, and its population density figures vary dramatically from region to region. Overall, the coastal regions in the East and Southeast have the highest population densities, as they belong to the more economically developed regions of the country. These coastal regions also have a higher urbanization rate. On the contrary, the regions in the West are covered with mountain landscapes which are not suitable for the development of big cities. Populous cities in China Several Chinese cities rank among the most populous cities in the world. According to estimates, Beijing and Shanghai will rank among the top ten megacities in the world by 2030. Both cities are also the largest Chinese cities in terms of land area. The previous colonial regions, Macao and Hong Kong, are two of the most densely populated cities in the world.

  10. a

    Population Density (2000)

    • esri-california-office.hub.arcgis.com
    Updated Aug 31, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Nature Conservancy (2016). Population Density (2000) [Dataset]. https://esri-california-office.hub.arcgis.com/datasets/TNC::population-density-2000-1
    Explore at:
    Dataset updated
    Aug 31, 2016
    Dataset authored and provided by
    The Nature Conservancy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    Human population density in 2000, by terrestrial ecoregion.

    We summarized human population density by ecoregion using the Gridded Population of the World database and projections for 2015 (CIESIN et al. 2005). The mean for each ecoregion was extracted using a zonal statistics algorithm.

    These data were derived by The Nature Conservancy, and were displayed in a map published in The Atlas of Global Conservation (Hoekstra et al., University of California Press, 2010). More information at http://nature.org/atlas.

    Data derived from:

    Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3). Socioeconomic Data and Applications Center (SEDAC), Columbia University Palisades, New York. Available at http://sedac.ciesin.columbia.edu/gpw. Digital media.

    United Nations Population Division (UNPD). 2007. Global population, largest urban agglomerations and cities of largest change. World Urbanization Prospects: The 2007 Revision Population Database. Available at http://esa.un.org/unup/index.asp.

    For more about The Atlas of Global Conservation check out the web map (which includes links to download spatial data and view metadata) at http://maps.tnc.org/globalmaps.html. You can also read more detail about the Atlas at http://www.nature.org/science-in-action/leading-with-science/conservation-atlas.xml, or buy the book at http://www.ucpress.edu/book.php?isbn=9780520262560

  11. Projected population density of most densely populated countries 2023-2050

    • statista.com
    • thefarmdosupply.com
    • +1more
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Projected population density of most densely populated countries 2023-2050 [Dataset]. https://www.statista.com/statistics/912425/global-population-density-by-select-country/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    As of July 2023, Monaco is the country with the highest population density worldwide, with an estimated population of nearly ****** per square kilometer.

  12. GloGCI-World Ghost Cities Index Ranking

    • figshare.com
    • data.mendeley.com
    application/x-rar
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yecheng Zhang; Tangqi Tu; Ying Long (2025). GloGCI-World Ghost Cities Index Ranking [Dataset]. http://doi.org/10.6084/m9.figshare.28248038.v3
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Yecheng Zhang; Tangqi Tu; Ying Long
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Due to rapid urbanization over the past 20 years, many newly developed areas have lagged in socio-economic maturity, creating an imbalance with older cities and leading to the rise of "ghost cities". However, the complexity of socio-economic factors has hindered global studies from measuring this phenomenon. To address this gap, a unified framework based on urban vitality theory and multi-source data is proposed to measure the Ghost City Index (GCI), which has been validated using various data sources. The study encompasses 8,841 natural cities worldwide with areas exceeding 5 km², categorizing each into new urban areas (developed after 2005) and old urban areas (developed before 2005). Urban vitality was gauged using the density of road networks, points of interest (POIs), and population density with 1 km resolution across morphological, functional, and social dimensions. By comparing urban vitality in new and old urban areas, we quantify the GCI globally using the theory of urban vitality for the first time. The results reveal that the vitality of new urban areas is 7.69% that of old ones. The top 5% (442) of cities were designated as ghost cities, a finding mirrored by news media and other research. This study sheds light on strategies for sustainable global urbanization, crucial for the United Nations' Sustainable Development Goals.The code file gives the calculation process of data respectively, and the excel file gives the obtained data. For the explanation of the fields in “citypoint.shp”, please refer to the Supplementary Information of the paper (https://doi.org/10.1016/j.habitatint.2025.103350).Ref: Zhang, Y., Tu, T., & Long, Y. (2025). Inferring ghost cities on the globe in newly developed urban areas based on urban vitality with multi-source data. Habitat International, 158, 103350. https://doi.org/10.1016/j.habitatint.2025.103350

  13. Simulated world-city public transport networks

    • data.europa.eu
    zip
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joint Research Centre, Simulated world-city public transport networks [Dataset]. https://data.europa.eu/data/datasets/eb8e348f-dc93-415a-9998-fb10f1787ba2?locale=pl
    Explore at:
    zipAvailable download formats
    Dataset provided by
    Wspólne Centrum Badawczehttps://joint-research-centre.ec.europa.eu/index_en
    Authors
    Joint Research Centre
    License

    http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

    Description

    This dataset describes counterfactual public transport networks that were simulated for 36 world cities, and the aggregate data discussed in the paper in which these data are published. UNIT OF MEASURE: Meters of network length. RESOLUTION: 1:1000000. COMPLETENESS: 100%. POLICY CONTEXT: Regional and urban policies. METHODOLOGY: Network expansion modelling. DATA SOURCES: FUA boundaries and population sizes according to 1km GHSL population grids (release 2019). LEVEL OF AGGREGATION: cities defined on population density clusters. UNCERTAINTY AND LIMITATIONS: Data based on simulation exercise with the explicit aim of creating counterfactual networks.

  14. Population of USA (2050-1955)

    • kaggle.com
    Updated Apr 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anandhu H (2022). Population of USA (2050-1955) [Dataset]. https://www.kaggle.com/datasets/anandhuh/population-data-usa
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 26, 2022
    Dataset provided by
    Kaggle
    Authors
    Anandhu H
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    United States
    Description

    Content

    The current population of the United States of America is 334,464,117 as of Saturday, April 16, 2022, based on Worldometer elaboration of the latest United Nations data. This three datasets contain population data of USA (2020 and histIndiaorical), population forecast and population in major cities.

    Attribute Information

    • Year - Years from 2020-1955
    • Population - Population in the respective year
    • Yearly % Change - Percentage Yearly Change in Population
    • Yearly Change - Yearly Change in Population
    • Migrants (net) - Total number of migrants
    • Median Age - Median age of the population
    • Fertility Rate - Fertility rate
    • Density (P/Km²)- Population density (population per square km)
    • Urban Pop %- Percentage of urban population
    • Urban Population- Urban population
    • Country's Share of World Pop - Population share
    • World Population - World Population in the respective year
    • India Global Rank - Global Rank in Population

    Source

    Link : https://www.worldometers.info/world-population/us-population/

    Updated Covid 19 and Other Datasets

    Link : https://www.kaggle.com/anandhuh/datasets

    If you find it useful, please support by upvoting ❤️

    Thank You

  15. Population density in the U.S. 2023, by state

    • tokrwards.com
    • statista.com
    Updated Oct 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veera Korhonen (2025). Population density in the U.S. 2023, by state [Dataset]. https://tokrwards.com/?_=%2Fstudy%2F10877%2Fdemographics-of-the-us-part-1-statista-dossier%2F%23D%2FIbH0Phabze5YKQxRXLgxTyDkFTtCs%3D
    Explore at:
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Veera Korhonen
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  16. f

    Table_1_Global city densities: Re-examining urban scaling theory.docx

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph R. Burger; Jordan G. Okie; Ian A. Hatton; Vanessa P. Weinberger; Munik Shrestha; Kyra J. Liedtke; Tam Be; Austin R. Cruz; Xiao Feng; César Hinojo-Hinojo; Abu S. M. G. Kibria; Kacey C. Ernst; Brian J. Enquist (2023). Table_1_Global city densities: Re-examining urban scaling theory.docx [Dataset]. http://doi.org/10.3389/fcosc.2022.879934.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    Frontiers
    Authors
    Joseph R. Burger; Jordan G. Okie; Ian A. Hatton; Vanessa P. Weinberger; Munik Shrestha; Kyra J. Liedtke; Tam Be; Austin R. Cruz; Xiao Feng; César Hinojo-Hinojo; Abu S. M. G. Kibria; Kacey C. Ernst; Brian J. Enquist
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Understanding scaling relations of social and environmental attributes of urban systems is necessary for effectively managing cities. Urban scaling theory (UST) has assumed that population density scales positively with city size. We present a new global analysis using a publicly available database of 933 cities from 38 countries. Our results showed that (18/38) 47% of countries analyzed supported increasing density scaling (pop ~ area) with exponents ~⅚ as UST predicts. In contrast, 17 of 38 countries (~45%) exhibited density scalings statistically indistinguishable from constant population densities across cities of varying sizes. These results were generally consistent in years spanning four decades from 1975 to 2015. Importantly, density varies by an order of magnitude between regions and countries and decreases in more developed economies. Our results (i) point to how economic and regional differences may affect the scaling of density with city size and (ii) show how understanding country- and region-specific strategies could inform effective management of urban systems for biodiversity, public health, conservation and resiliency from local to global scales.200 word statement of contribution: Urban Scaling Theory (UST) is a general scaling framework that makes quantitative predictions for how many urban attributes spanning physical, biological and social dimensions scale with city size; thus, UST has great implications in guiding future city developments. A major assumption of UST is that larger cities become denser. We evaluated this assumption using a publicly available global dataset of 933 cities in 38 countries. Our scaling analysis of population size and area of cities revealed that while many countries analyzed showed increasing densities with city size, about 45% of countries showed constant densities across cities. These results question a key assumption of UST. Our results suggest policies and management strategies for biodiversity conservation, public health and sustainability of urban systems may need to be tailored to national and regional scaling relations to be effective.

  17. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  18. Data from: Population estimation from mobile network traffic metadata

    • zenodo.org
    application/gzip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghazaleh Khodabandelou; Vincent Gauthier; Vincent Gauthier; Mounim El Yacoubi; Marco Fiore; Ghazaleh Khodabandelou; Mounim El Yacoubi; Marco Fiore (2020). Population estimation from mobile network traffic metadata [Dataset]. http://doi.org/10.5281/zenodo.1067032
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ghazaleh Khodabandelou; Vincent Gauthier; Vincent Gauthier; Mounim El Yacoubi; Marco Fiore; Ghazaleh Khodabandelou; Mounim El Yacoubi; Marco Fiore
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Please cite our paper if you publish material based on those datasets

    G. Khodabandelou, V. Gauthier, M. El-Yacoubi, M. Fiore, "Estimation of Static and Dynamic Urban Populations with Mobile Network Metadata", in IEEE Trans. on Mobile Computing, 2018 (in Press). 10.1109/TMC.2018.2871156

    Abstract

    Communication-enabled devices that are physically carried by individuals are today pervasive,
    which opens unprecedented opportunities for collecting digital metadata about the mobility of large populations. In this paper, we propose a novel methodology for the estimation of people density at metropolitan scales, using subscriber presence metadata collected by a mobile operator. We show that our approach suits the estimation of static population densities, i.e., of the distribution of dwelling units per urban area contained in traditional censuses. Specifically, it achieves higher accuracy than that granted by previous equivalent solutions. In addition, our approach enables the estimation of dynamic population densities, i.e., the time-varying distributions of people in a conurbation. Our results build on significant real-world mobile network metadata and relevant ground-truth information in multiple urban scenarios.

    Dataset Columns

    This dataset cover one month of data taken during the month of April 2015 for three Italian cities: Rome, Milan, Turin. The raw data has been provided during the Telecom Italia Big Data Challenge (http://www.telecomitalia.com/tit/en/innovazione/archivio/big-data-challenge-2015.html)

    1. grid_id: the coordinate of the grid can be retrieved with the shapefile of a given city
    2. date: format Y-M-D H:M:S
    4. landuse_label: the land use label has been computed by through method described in [2]
    5. population: Census population of a given grid block as defined by the Istituto nazionale di statistica (ISTAT https://www.istat.it/en/censuses) in 2011
    6. estimation: Dynamics density population estimation (in person) as the result of the method described in [1]
    7. area: surface of the "grid id" considered in km^2
    8. geometry: the shape of the area considered with the EPSG:3003 coordinate system (only with quilt)

    Note

    Due to legal constraints, we cannot share directly the original data from the Telecom Italia Big Data Challenge we used to build this dataset.

    Easy access to this dataset with quilt

    Install the dataset repository:

    $ quilt install vgauthier/DynamicPopEstimate

    Use the dataset with a Panda Dataframe

    >>> from quilt.data.vgauthier import DynamicPopEstimate
    >>> import pandas as pd
    >>> df = pd.DataFrame(DynamicPopEstimate.rome())

    Use the dataset with a GeoPanda Dataframe

    >>> from quilt.data.vgauthier import DynamicPopEstimate
    >>> import geopandas as gpd
    >>> df = gpd.DataFrame(DynamicPopEstimate.rome())

    References

    [1] G. Khodabandelou, V. Gauthier, M. El-Yacoubi, M. Fiore, "Population estimation from mobile network traffic metadata", in proc of the 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1 - 9, 2016.

    [2] A. Furno, M. Fiore, R. Stanica, C. Ziemlicki, and Z. Smoreda, "A tale of ten cities: Characterizing signatures of mobile traffic in urban areas," IEEE Transactions on Mobile Computing, Volume: 16, Issue: 10, 2017.

  19. d

    Population Density, 2001

    • datasets.ai
    • open.canada.ca
    • +1more
    0, 33
    Updated Sep 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada | Ressources naturelles Canada (2024). Population Density, 2001 [Dataset]. https://datasets.ai/datasets/a28cba15-b31b-5908-b6ec-b74703a70371
    Explore at:
    0, 33Available download formats
    Dataset updated
    Sep 14, 2024
    Dataset authored and provided by
    Natural Resources Canada | Ressources naturelles Canada
    Description

    Canada, with 3.33 people per square kilometre, has one of the lowest population densities in the world. In 2001, most of Canada's population of 30,007,094 lived within 200 kilometres of the United States (along Canada's south). In fact, the inhabitants of our three biggest cities -- Toronto, Montréal and Vancouver -- can drive to the border in less than two hours. Thousands of kilometres to the north, our polar region -- the Yukon, the Northwest Territories and Nunavut -- is relatively empty, embracing 41% of our land mass but only 0.3% of our population. An inset map shows in greater detail the Windsor-Québec Corridor where a high concentration of Canadians live.

  20. n

    Data from: Coastlines at Risk - An Index of Potential Development-Related...

    • cmr.earthdata.nasa.gov
    Updated Apr 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Coastlines at Risk - An Index of Potential Development-Related Threats to Coastal Ecosystems [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214621973-SCIOPS
    Explore at:
    Dataset updated
    Apr 24, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Earth
    Description

    An index of potential threats to coastal ecosystems due to development-related activities was developed. These threats range from habitat destruction, to sewage and industrial pollution, and to species introductions. The index is based on five globally available georeferenced indicators of human pressures: Population density, cities, major ports, road networks; and pipelines

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cities with the highest population density globally 2025 [Dataset]. https://www.statista.com/statistics/1237290/cities-highest-population-density/
Organization logo

Cities with the highest population density globally 2025

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Oct 9, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2025
Area covered
World
Description

Mogadishu in Somalia led the ranking of cities with the highest population density in 2025, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.

Search
Clear search
Close search
Google apps
Main menu