Mogadishu in Somalia led the ranking of cities with the highest population density in 2023, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.
This dataset was created by smokedCedar
Mexico City ranked as the most densely populated city in Mexico as of 2023. The capital recorded ***** inhabitants per square kilometer. Xalapa and Acapulco followed with ***** and ***** inhabitants per square kilometer, respectively.
As of 2023, the top five most densely populated cities in Latin America and the Caribbean were in Colombia. The capital, Bogotá, ranked first with over ****** inhabitants per square kilometer.
https://data.gov.tw/licensehttps://data.gov.tw/license
statistic_yyy (statistical year), site_id (area), people_total (population at year-end), area (land area), population_density (population density)
VITAL SIGNS INDICATOR Population (LU1)
FULL MEASURE NAME
Population estimates
LAST UPDATED
February 2023
DESCRIPTION
Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.
DATA SOURCE
California Department of Finance: Population and Housing Estimates - http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
Table E-6: County Population Estimates (1960-1970)
Table E-4: Population Estimates for Counties and State (1970-2021)
Table E-8: Historical Population and Housing Estimates (1990-2010)
Table E-5: Population and Housing Estimates (2010-2021)
Bay Area Jurisdiction Centroids (2020) - https://data.bayareametro.gov/Boundaries/Bay-Area-Jurisdiction-Centroids-2020-/56ar-t6bs
Computed using 2020 US Census TIGER boundaries
U.S. Census Bureau: Decennial Census Population Estimates - http://www.s4.brown.edu/us2010/index.htm- via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University
1970-2020
U.S. Census Bureau: American Community Survey (5-year rolling average; tract) - https://data.census.gov/
2011-2021
Form B01003
Priority Development Areas (Plan Bay Area 2050) - https://opendata.mtc.ca.gov/datasets/MTC::priority-development-areas-plan-bay-area-2050/about
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
All historical data reported for Census geographies (metropolitan areas, county, city and tract) use current legal boundaries and names. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of December 2022.
Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.
Population estimates for Bay Area tracts and PDAs are from the decennial Census (1970-2020) and the American Community Survey (2011-2021 5-year rolling average). Population estimates for PDAs are allocated from tract-level Census population counts using an area ratio. For example, if a quarter of a Census tract lies with in a PDA, a quarter of its population will be allocated to that PDA. Estimates of population density for PDAs use gross acres as the denominator. Note that the population densities between PDAs reported in previous iterations of Vital Signs are mostly not comparable due to minor differences and an updated set of PDAs (previous iterations reported Plan Bay Area 2040 PDAs, whereas current iterations report Plan Bay Area 2050 PDAs).
The following is a list of cities and towns by geographical area:
Big Three: San Jose, San Francisco, Oakland
Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside
Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville
Unincorporated: all unincorporated towns
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Database Name: population_cities
Description:
The population_cities
dataset provides information on the population of various cities worldwide. It includes key details such as the city's name, the country it is located in, the total population, and the continent it belongs to. This dataset is ideal for researchers, data analysts, and enthusiasts looking to explore global population trends, conduct regional comparisons, or analyze urban demographics across continents.
Columns:
1. City: Name of the city.
2. Country: Name of the country where the city is located.
3. Population: Total population of the city.
4. Continent: The continent where the city is situated (e.g., Asia, Europe, Africa, etc.).
Potential Uses:
- Comparative analysis of city populations across continents.
- Visualization of population density in specific regions.
- Studies on urbanization trends and growth patterns.
- Development of machine learning models for population prediction or clustering analysis.
Feel free to explore and share insights from this dataset!
Grid of population density in the conterminous United States at a resolution of one kilometer. The grid was converted from an ASCII file obtained from the Consortium for International Earth Science Information Network (CIESIN).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 26 series, with data for years 1851 - 1971 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Unit of measure (1 items: Persons ...) Geography (13 items: Canada; Newfoundland and Labrador; Nova Scotia; Prince Edward Island ...) Estimates (2 items: Population; Population density per square mile ...).
Population Numbers By New York City Neighborhood Tabulation Areas The data was collected from Census Bureaus' Decennial data dissemination (SF1). Neighborhood Tabulation Areas (NTAs), are aggregations of census tracts that are subsets of New York City's 55 Public Use Microdata Areas (PUMAs). Primarily due to these constraints, NTA boundaries and their associated names may not definitively represent neighborhoods. This report shows change in population from 2000 to 2010 for each NTA. Compiled by the Population Division – New York City Department of City Planning.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density (people per sq. km of land area) in World was reported at 61.59 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Population density (people per sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
The population density picture of Boston is generally a story of two Bostons: the high density central and northern neighborhoods, and the low density southern neighborhoods.The highest density areas of Boston are particularly concentrated in Brighton, Allston, and the Fenway area, areas of the city with large numbers of college students and young adults. There is also high population density in areas such as the Back Bay, the South End, Charlestown, the North End, and South Boston. These are all relatively small areas geographically, but have housing stock conducive to population density (e.g. multi-family dwelling units, row housing, large apartment buildings). The southern neighborhoods, specifically Hyde Park and West Roxbury, have significant numbers of people living in them, but lots sizes tend to be much larger. These areas of the city also tend to have more single family dwelling units. In that, there are fewer people per square mile than places north in the city. Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, areas of highest density exceed 30,000 persons per square kilometer. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.How to make this map for your city
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vietnam Population Density: SE: Ho Chi Minh city data was reported at 4,513.100 Person/sq km in 2023. This records an increase from the previous number of 4,481.000 Person/sq km for 2022. Vietnam Population Density: SE: Ho Chi Minh city data is updated yearly, averaging 4,196.400 Person/sq km from Dec 2011 (Median) to 2023, with 13 observations. The data reached an all-time high of 4,513.100 Person/sq km in 2023 and a record low of 3,633.100 Person/sq km in 2011. Vietnam Population Density: SE: Ho Chi Minh city data remains active status in CEIC and is reported by General Statistics Office. The data is categorized under Global Database’s Vietnam – Table VN.G003: Population Density: By Provinces.
VITAL SIGNS INDICATOR Population (LU1)
FULL MEASURE NAME Population estimates
LAST UPDATED October 2019
DESCRIPTION Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.
DATA SOURCES U.S Census Bureau: Decennial Census No link available (1960-1990) http://factfinder.census.gov (2000-2010)
California Department of Finance: Population and Housing Estimates Table E-6: County Population Estimates (1961-1969) Table E-4: Population Estimates for Counties and State (1971-1989) Table E-8: Historical Population and Housing Estimates (2001-2018) Table E-5: Population and Housing Estimates (2011-2019) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census - via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University Population Estimates (1970 - 2010) http://www.s4.brown.edu/us2010/index.htm
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2011-2017) http://factfinder.census.gov
U.S. Census Bureau: Intercensal Estimates Estimates of the Intercensal Population of Counties (1970-1979) Intercensal Estimates of the Resident Population (1980-1989) Population Estimates (1990-1999) Annual Estimates of the Population (2000-2009) Annual Estimates of the Population (2010-2017) No link available (1970-1989) http://www.census.gov/popest/data/metro/totals/1990s/tables/MA-99-03b.txt http://www.census.gov/popest/data/historical/2000s/vintage_2009/metro.html https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) All legal boundaries and names for Census geography (metropolitan statistical area, county, city, and tract) are as of January 1, 2010, released beginning November 30, 2010, by the U.S. Census Bureau. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of August 2019. For more information on PDA designation see http://gis.abag.ca.gov/website/PDAShowcase/.
Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970 -2010) and the American Community Survey (2008-2012 5-year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.
Population estimates for Bay Area PDAs are from the decennial Census (1970 - 2010) and the American Community Survey (2006-2010 5 year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Population estimates for PDAs are derived from Census population counts at the tract level for 1970-1990 and at the block group level for 2000-2017. Population from either tracts or block groups are allocated to a PDA using an area ratio. For example, if a quarter of a Census block group lies with in a PDA, a quarter of its population will be allocated to that PDA. Tract-to-PDA and block group-to-PDA area ratios are calculated using gross acres. Estimates of population density for PDAs use gross acres as the denominator.
Annual population estimates for metropolitan areas outside the Bay Area are from the Census and are benchmarked to each decennial Census. The annual estimates in the 1990s were not updated to match the 2000 benchmark.
The following is a list of cities and towns by geographical area: Big Three: San Jose, San Francisco, Oakland Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville Unincorporated: all unincorporated towns
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Population Density: People per Square Km data was reported at 3.382 Person/sq km in 2022. This records an increase from the previous number of 3.339 Person/sq km for 2021. Australia Population Density: People per Square Km data is updated yearly, averaging 2.263 Person/sq km from Dec 1961 (Median) to 2022, with 62 observations. The data reached an all-time high of 3.382 Person/sq km in 2022 and a record low of 1.365 Person/sq km in 1961. Australia Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Australia – Table AU.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.;Food and Agriculture Organization and World Bank population estimates.;Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The urban–rural continuum classifies the global population, allocating rural populations around differently-sized cities. The classification is based on four dimensions: population distribution, population density, urban center location, and travel time to urban centers, all of which can be mapped globally and consistently and then aggregated as administrative unit statistics.Using spatial data, we matched all rural locations to their urban center of reference based on the time needed to reach these urban centers. A hierarchy of urban centers by population size (largest to smallest) is used to determine which center is the point of “reference” for a given rural location: proximity to a larger center “dominates” over a smaller one in the same travel time category. This was done for 7 urban categories and then aggregated, for presentation purposes, into “large cities” (over 1 million people), “intermediate cities” (250,000 –1 million), and “small cities and towns” (20,000–250,000).Finally, to reflect the diversity of population density across the urban–rural continuum, we distinguished between high-density rural areas with over 1,500 inhabitants per km2 and lower density areas. Unlike traditional functional area approaches, our approach does not define urban catchment areas by using thresholds, such as proportion of people commuting; instead, these emerge endogenously from our urban hierarchy and by calculating the shortest travel time.Urban-Rural Catchment Areas (URCA).tif is a raster dataset of the 30 urban–rural continuum categories for the urban–rural continuum showing the catchment areas around cities and towns of different sizes. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration. The raster also allows for visualizing a simplified continuum created by grouping the seven urban agglomerations into 4 categories.Urban-Rural Catchment Areas (URCA).tif is in GeoTIFF format, band interleaved with LZW compression, suitable for use in Geographic Information Systems and statistical packages. The data type is byte, with pixel values ranging from 1 to 30. The no data value is 128. It has a spatial resolution of 30 arc seconds, which is approximately 1km at the equator. The spatial reference system (projection) is EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long). The geographic extent is 83.6N - 60S / 180E - 180W. The same tif file is also available as an ESRI ArcMap MapPackage Urban-Rural Catchment Areas.mpkFurther details are in the ReadMe_data_description.docx
Mogadishu in Somalia led the ranking of cities with the highest population density in 2023, with ****** residents per square kilometer. When it comes to countries, Monaco is the most densely populated state worldwide.