In 2023, *** percent of South Dakota residents were American Indian or Alaska Native. A further **** percent of the population were white, and *** percent of South Dakota residents were of two or more races in that same year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of South Dakota by race. It includes the population of South Dakota across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of South Dakota across relevant racial categories.
Key observations
The percent distribution of South Dakota population by race (across all racial categories recognized by the U.S. Census Bureau): 81.52% are white, 2.24% are Black or African American, 7.73% are American Indian and Alaska Native, 1.40% are Asian, 0.07% are Native Hawaiian and other Pacific Islander, 1.40% are some other race and 5.65% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Dakota Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of South Dakota by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of South Dakota across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 50.67% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Dakota Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of South Dakota by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for South Dakota. The dataset can be utilized to understand the population distribution of South Dakota by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in South Dakota. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for South Dakota.
Key observations
Largest age group (population): Male # 10-14 years (32,245) | Female # 5-9 years (30,539). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Dakota Population by Gender. You can refer the same here
Map containing historical census data from 1900 - 2000 throughout the western United States at the county level. Data includes total population, population density, and percent population change by decade for each county. Population data was obtained from the US Census Bureau and joined to 1:2,000,000 scale National Atlas counties shapefile.
In 2021, just over five percent of the total population of South Dakota was uninsured. The largest part of South Dakota's population was insured through employers. This statistic depicts the health insurance status distribution of the total population in South Dakota in 2021.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
The 2015 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the South Dakota population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for South Dakota. The dataset can be utilized to understand the population distribution of South Dakota by age. For example, using this dataset, we can identify the largest age group in South Dakota.
Key observations
The largest age group in South Dakota was for the group of age 10 to 14 years years with a population of 62,673 (6.97%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in South Dakota was the 80 to 84 years years with a population of 17,298 (1.92%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Dakota Population by Age. You can refer the same here
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
These data represent an resource selection function (RSF) for translocated sage-grouse in North Dakota during the summer. Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution, where a remnant population remains despite recent development of energy‐related infrastructure. Resource managers in this region have determined a need to augment sage‐grouse populations using translocation techniques that can be important management tools for coun ...
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Identifying the specific environmental features and associated density-dependent processes that limit population growth is central to both ecology and conservation. Comparative assessments of sympatric species allow for inference into how ecologically similar species differentially respond to their shared environment, which can be used to inform community-level conservation strategies. Comparative assessments can nevertheless be complicated by interactions and feedback loops among the species in question. We developed an integrated population model based on sixty-one years of ecological data describing the demographic histories of Canvasbacks (Aythya valisineria) and Redheads (Aythya americana), two species of migratory diving ducks that utilize similar breeding habitats and affect each other’s demography through interspecific nest parasitism. We combined this model with a transient life table response experiment to determine the extent that demographic rates, and their contributions to population growth, were similar between these two species. We found that demographic rates and, to a lesser extent, their contributions to population growth covaried between Canvasbacks and Redheads, but the trajectories of population abundances widely diverged between the two species during the end of the 20th century due to inherent differences between the species life-histories and sensitivities to both environmental variation and harvest pressure. We found that annual survival of both species increased during years of restrictive harvest regulations; however, recent harvest pressure on female Canvasbacks may be contributing to population declines. Despite periodic, and often dramatic, increases in breeding abundance during wet years, the number of breeding Canvasbacks declined by 13% whereas the number of breeding Redheads has increased by 37% since 1961. Reductions in harvest pressure and improvements in submerged aquatic vegetation throughout the wintering grounds have mediated the extent to which populations of both species contracted during dry years in the Prairie Pothole Region. However, continued degradation of breeding habitats through climate-related shifts in wetland hydrology and agricultural conversion of surrounding grassland habitats may have exceeded the capacity for demographic compensation during the non-breeding season. Methods DATA COLLECTION We combined a series of long-term data sets into a single integrated population model that provided insights into how variation in seasonal survival (band releases and recoveries) and offspring production (harvest age-ratios) contributed to fluctuations in population growth (breeding survey, harvest estimates) for Canvasbacks and Redheads from 1961–2021. Banding Data – Information regarding the banding and subsequent harvest of ducks was acquired from the GameBirds Database CD (Bird Banding Lab, USGS Patuxent Wildlife Research Center, Laurel MD, USA, version August 2022). Male and female Canvasbacks and Redheads were captured following breeding but prior to the hunting season (Pre-Hunting) as ducklings (Local) or hatch year (HY; fledged juvenile) individuals as well as after hatch year (AHY; adult) individuals or following the hunting season (Post-Hunting) as an undifferentiated mixture of second year (SY) and after second year (ASY) individuals captured and released across North America from 1961–2022. We limited the pre-harvest banding data for both species to include all individuals banded and released alive in areas within the Canadian provinces of Alberta, Manitoba, Saskatchewan, as well as the states of Minnesota, Montana, North Dakota, and South Dakota within the USA (Fig. 1). For the pre-hunting banding group, we retained individuals captured between 1961–2021 during the late summer (Jul 15th – Sep 15th) with a known sex (M or F) and age-class (local, HY or AHY) that were released without any additional markers considered to meaningfully affect survival of an individual (e.g., nasal saddles or dual banding were permissible but telemetered individuals were excluded; Lameris & Kleyheeg, 2017). For post-hunting banding, we limited the spatial boundary of banding efforts to only consider individuals released from the Atlantic, Central, or Mississippi Flyways (Fig. 1). We followed the same data selection procedures, but limited releases to occur between Jan. 1st – March 15th from 1962–2022. Because too few banders differentiated SY from ASY at time of banding, we treated all post-hunting samples as AHY adults. Individuals banded during this period that were reported to be harvested during the winter they were originally banded were censored from the analysis, as the underlying model assumption was that this cohort of individuals had already survived the current hunting season. For both seasonal banding efforts, we only included recoveries of hunter-shot individuals harvested between September and February in which a known year-of-death could be ascertained. In addition to self-reported recoveries (i.e., reported by the hunter), we included hunter-harvested individuals that were instead reported by federal, state, or provincial entities (e.g., outcomes of hunter check stations or other forms of solicitation). We limited the dataset to only include recoveries of hunter-harvested individuals killed within 15 years of initial banding, which represented > 99% of pre-hunting and post-hunting recoveries. This cut-off was arbitrarily selected but did not meaningfully bias parameter estimation while vastly improving computational efficiency by bypassing the estimation of hundreds of zero-equivalent cell probabilities (personal communication S. Bonner). Harvest Intensity – We used the average number of Canvasbacks or Redheads allowed to be harvested per day (i.e., bag limit; (Appendix S1: Tables S1a-b) across the U.S. portions of the Atlantic, Mississippi, Central, and Pacific flyways during each year of the study as an index of harvest regulatory pressure. Annual harvest restrictions were acquired from the published literature (Péron et al., 2012), the annual release of the Late-Season Migratory Bird Hunting Regulations (e.g., USFWS 2022), and direct requests to the U.S. Fish and Wildlife Service. For these species, liberal harvest regulations were bag limits of two (Canvasbacks) and two to four (Redheads) allowable harvest per day, whereas conservative harvest regulations were either a bag limit of one individual per day or total closure. Harvest Composition – Data describing the age and sex structure of the harvested Canvasback and Redhead populations were derived from the annual Parts Collection surveys conducted by the U.S. Fish and Wildlife Service (USFWS) where a subset of hunters submit a wing from every duck they harvested (Pearse et al. 2014). These data were acquired through a direct request to the U.S. Fish and Wildlife Service. Additionally, estimates of the total number of Canvasbacks and Redheads harvested in the United States and Canada were derived from the Harvest Information Program (Steeg et al., 2002) and Canadian National Harvest Survey (Smith et al., 2022), respectively. Breeding Duck and Pond Densities – The relative number of breeding Canvasbacks and Redheads, as well as the relative amount of their breeding habitat (i.e., flooded ponds) within the Prairies were calculated using count data from the USFWS Waterfowl Breeding Population and Habitat Survey (hereafter BPOP; Smith, 1995), which has conducted an annual survey of breeding waterfowl and their habitats throughout the core part of these species’ breeding ranges (i.e., central Canada and the north-central United States) during the spring from 1961 through 2022 (U.S. Fish and Wildlife Service, 2022). However, BPOP surveys did not occur during 2020 and 2021. For the purposes of this study, we limited the spatial extent of BPOP survey to only include transects flown within Alberta, Manitoba, Saskatchewan, Montana, North Dakota, and South Dakota. Agriculture Development – The amounts of active cropland in the Prairies during each year of the study were estimated from Canada and United States Agriculture Census data (see Buderman et al., 2020). Annual estimates of active cropland acreages were summarized to represent an index of agricultural development during 1961–2021. Although agricultural development is predicted to have greater impact on upland-nesting dabbling ducks (Duncan and Devries 2018), it also impacts the wetland habitats in which Canvasbacks and Redheads forage and nest, as well as the predator communities that can access overwater nesting pochards (Sargeant et al. 1993, Bartzen et al. 2010). Winter Habitat – Winter habitat conditions were assumed to be related to submerged aquatic vegetation (SAV) within the Chesapeake for Canvasbacks and environmental salinity (TDS; total dissolved solids) in the Laguna Madre for Redheads. Although Redheads likely respond to variation in SAV, time series data describing SAV were not available for the Laguna Madre. Therefore, we assumed that annual fluctuations in salinity were an informative proxy of both SAV conditions and osmotic constraints (Quammen and Onuf 1993, Moore 2009), which in turn was representative of winter habitat conditions that simultaneously influenced Redhead food availability and harvest risk (Ballard et al. 2021).. Climate Data – We used the average Pacific/North American (PNA; Leathers et al., 1991) teleconnection pattern from April–July as an index of drought severity or environmental stress during the breeding season throughout the Prairies, and average sea-surface temperatures (SST) from September–March in the Chesapeake and Laguna Madre as an index of winter severity for Canvasbacks and Redheads, respectively (see Data Availability statement).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
These data represent an resource selection function (RSF) for translocated sage-grouse in North Dakota during the brooding season. Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution, where a remnant population remains despite recent development of energy‐related infrastructure. Resource managers in this region have determined a need to augment sage‐grouse populations using translocation techniques that can be important management tools ...
This shapefile contains landscape factors representing human disturbances summarized to local and network catchments of river reaches for the state of North Dakota. This dataset is the result of clipping the feature class 'NFHAP 2010 HCI Scores and Human Disturbance Data for the Conterminous United States linked to NHDPLUSV1.gdb' to the state boundary of North Dakota. Landscape factors include land uses, population density, roads, dams, mines, and point-source pollution sites. The source datasets that were compiled and attributed to catchments were identified as being: (1) meaningful for assessing fish habitat; (2) consistent across the entire study area in the way that they were assembled; (3) representative of conditions in the past 10 years, and (4) of sufficient spatial resolution that they could be used to make valid comparisons among local catchment units. In this data set, these variables are linked to the catchments of the National Hydrography Dataset Plus Version 1 (NHDPlusV1) using the COMID identifier. They can also be linked to the reaches of the NHDPlusV1 using the COMID identifier. Catchment attributes are available for both local catchments (defined as the land area draining directly to a reach; attributes begin with "L_" prefix) and network catchments (defined by all upstream contributing catchments to the reach's outlet, including the reach's own local catchment; attributes begin with "N_" prefix). This shapefile also includes habitat condition scores created based on responsiveness of biological metrics to anthropogenic landscape disturbances throughout ecoregions. Separate scores were created by considering disturbances within local catchments, network catchments, and a cumulative score that accounted for the most limiting disturbance operating on a given biological metric in either local or network catchments. This assessment only scored reaches representing streams and rivers (see the process section for more details). Please use the following citation: Esselman, P., D.M. Infante, L. Wang, W. Taylor, W. Daniel, R. Tingley, J. Fenner, A. Cooper, D. Wieferich, D. Thornbrugh and J. Ross. (April 2011) National Fish Habitat Action Plan (NFHAP) 2010 HCI Scores and Human Disturbance Data (linked to NHDPLUSV1) for North Dakota. National Fish Habitat Partnership Data System. http://dx.doi.org/doi:10.5066/F7XG9P5R
In 2021, around ** percent of individuals living in the District of Columbia identified as LGBT. Colorado, Arizona, Nevada, and Oregon also had high rates, exceeding *** percent. Mississippi and North Dakota had the lowest rates of LGBT populations, the only states with less than **** percent.
The 2019 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the South Dakota population pyramid, which represents the South Dakota population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Dakota Population by Age. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the .Technical Documentation.. section......Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the .Methodology.. section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Explanation of Symbols:..An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution..An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution..An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An "(X)" means that the estimate is not applicable or not available...Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2013-2017 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see .Accuracy of the Data..). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2013-2017 American Community Survey 5-Year Estimates
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the South Dakota Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of South Dakota, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of South Dakota.
Key observations
Among the Hispanic population in South Dakota, regardless of the race, the largest group is of Mexican origin, with a population of 22,841 (55.33% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Dakota Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of South Dakota by race. It includes the distribution of the Non-Hispanic population of South Dakota across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of South Dakota across relevant racial categories.
Key observations
Of the Non-Hispanic population in South Dakota, the largest racial group is White alone with a population of 721,732 (84.13% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Dakota Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the South Dakota population by race and ethnicity. The dataset can be utilized to understand the racial distribution of South Dakota.
The dataset will have the following datasets when applicable
Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
In 2023, *** percent of South Dakota residents were American Indian or Alaska Native. A further **** percent of the population were white, and *** percent of South Dakota residents were of two or more races in that same year.