24 datasets found
  1. Population density in Texas 1960-2018

    • statista.com
    Updated Dec 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in Texas 1960-2018 [Dataset]. https://www.statista.com/statistics/304707/texas-population-density/
    Explore at:
    Dataset updated
    Dec 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This graph shows the population density in the federal state of Texas from 1960 to 2018. In 2018, the population density of Texas stood at 109.9 residents per square mile of land area.

  2. K

    Round Rock, Texas Population Density (2010 Census)

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Aug 28, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Round Rock, Texas (2018). Round Rock, Texas Population Density (2010 Census) [Dataset]. https://koordinates.com/layer/17796-round-rock-texas-population-density-2010-census/
    Explore at:
    geopackage / sqlite, mapinfo tab, dwg, geodatabase, csv, pdf, shapefile, kml, mapinfo mifAvailable download formats
    Dataset updated
    Aug 28, 2018
    Dataset authored and provided by
    City of Round Rock, Texas
    Area covered
    Description

    Geospatial data about Round Rock, Texas Population Density (2010 Census). Export to CAD, GIS, PDF, CSV and access via API.

  3. Texas Population density

    • knoema.es
    • knoema.de
    csv, json, sdmx, xls
    Updated Jun 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2023). Texas Population density [Dataset]. https://knoema.es/atlas/Estados-Unidos-de-Am%C3%A9rica/Texas/Population-density
    Explore at:
    csv, xls, sdmx, jsonAvailable download formats
    Dataset updated
    Jun 28, 2023
    Dataset authored and provided by
    Knoemahttp://knoema.com/
    Time period covered
    2011 - 2022
    Area covered
    Texas, Estados Unidos
    Variables measured
    Population density
    Description

    44,29 (persons per sq. km) in 2022.

  4. TIGER/Line Shapefile, Current, State, Texas, Census Tract

    • catalog.data.gov
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geospatial Products Branch (Point of Contact) (2023). TIGER/Line Shapefile, Current, State, Texas, Census Tract [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-current-state-texas-census-tract
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Texas
    Description

    This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  5. 2022 Cartographic Boundary File (KML), Current Census Tract for Texas,...

    • catalog.data.gov
    • datasets.ai
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2022 Cartographic Boundary File (KML), Current Census Tract for Texas, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2022-cartographic-boundary-file-kml-current-census-tract-for-texas-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Texas
    Description

    The 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  6. a

    URBAN AREAS (TEXAS)(2020)

    • data-nctcoggis.hub.arcgis.com
    Updated Jan 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    North Central Texas Council of Governments (2023). URBAN AREAS (TEXAS)(2020) [Dataset]. https://data-nctcoggis.hub.arcgis.com/items/10ac641cdd994d8ea313963a032b1bf1
    Explore at:
    Dataset updated
    Jan 1, 2023
    Dataset authored and provided by
    North Central Texas Council of Governments
    Area covered
    Description

    Urban areas comprise a densely-settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or a population of at least 5,000. These areas were delineated by the U.S. Census Bureau following the 2020 Decennial Census. For additional information, see: https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural.html. For FAQs see: https://www2.census.gov/geo/pdfs/reference/ua/Census_UA_2020FAQs.pdf.

  7. M

    Austin Metro Area Population 1950-2025

    • macrotrends.net
    csv
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austin Metro Area Population 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/cities/22926/austin/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1950 - Mar 27, 2025
    Area covered
    United States, Austin
    Description

    Chart and table of population level and growth rate for the Austin metro area from 1950 to 2025. United Nations population projections are also included through the year 2035.

  8. TIGER/Line Shapefile, 2021, State, Texas, Census Tracts

    • catalog.data.gov
    Updated Nov 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2022). TIGER/Line Shapefile, 2021, State, Texas, Census Tracts [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2021-state-texas-census-tracts
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Texas
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  9. d

    Data from: Attributes for NHDplus Catchments (Version 1.1) for the...

    • datadiscoverystudio.org
    • dataone.org
    • +2more
    pdf, zip
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/cabff63c99134024a8d8a9e80724f5d9/html
    Explore at:
    pdf, zipAvailable download formats
    Dataset updated
    Jun 8, 2018
    Area covered
    Contiguous United States, United States
    Description

    description: This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.; abstract: This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  10. M

    San Antonio Metro Area Population 1950-2025

    • macrotrends.net
    csv
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). San Antonio Metro Area Population 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/cities/23128/san-antonio/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1950 - Mar 22, 2025
    Area covered
    San Antonio, United States
    Description

    Chart and table of population level and growth rate for the San Antonio metro area from 1950 to 2025. United Nations population projections are also included through the year 2035.

  11. Percentage of Hispanic population in the U.S. by state 2023

    • statista.com
    Updated Oct 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Percentage of Hispanic population in the U.S. by state 2023 [Dataset]. https://www.statista.com/statistics/259865/percentage-of-hispanic-population-in-the-us-by-state/
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2022, around 48.59 percent of New Mexico's population was of Hispanic origin, compared to the national percentage of 19.45. California, Texas, and Arizona also registered shares over 30 percent. The distribution of the U.S. population by ethnicity can be accessed here.

  12. M

    Houston Metro Area Population 1950-2025

    • macrotrends.net
    csv
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Houston Metro Area Population 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/cities/23014/houston/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1950 - Mar 22, 2025
    Area covered
    United States
    Description

    Chart and table of population level and growth rate for the Houston metro area from 1950 to 2025. United Nations population projections are also included through the year 2035.

  13. f

    Model state variables and parameters.

    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Freeman; John M. Anderies; Raymond P. Mauldin; Robert J. Hard (2023). Model state variables and parameters. [Dataset]. http://doi.org/10.1371/journal.pone.0218440.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Jacob Freeman; John M. Anderies; Raymond P. Mauldin; Robert J. Hard
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Model state variables and parameters.

  14. U.S. population of metropolitan areas in 2023

    • statista.com
    Updated Jul 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. population of metropolitan areas in 2023 [Dataset]. https://www.statista.com/statistics/183600/population-of-metropolitan-areas-in-the-us/
    Explore at:
    Dataset updated
    Jul 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the metropolitan area of New York-Newark-Jersey City had the biggest population in the United States. Based on annual estimates from the census, the metropolitan area had around 19.5 million inhabitants, which was a slight decrease from the previous year. The Los Angeles and Chicago metro areas rounded out the top three. What is a metropolitan statistical area? In general, a metropolitan statistical area (MSA) is a core urbanized area with a population of at least 50,000 inhabitants – the smallest MSA is Carson City, with an estimated population of nearly 56,000. The urban area is made bigger by adjacent communities that are socially and economically linked to the center. MSAs are particularly helpful in tracking demographic change over time in large communities and allow officials to see where the largest pockets of inhabitants are in the country. How many MSAs are in the United States? There were 421 metropolitan statistical areas across the U.S. as of July 2021. The largest city in each MSA is designated the principal city and will be the first name in the title. An additional two cities can be added to the title, and these will be listed in population order based on the most recent census. So, in the example of New York-Newark-Jersey City, New York has the highest population, while Jersey City has the lowest. The U.S. Census Bureau conducts an official population count every ten years, and the new count is expected to be announced by the end of 2030.

  15. K

    Houston, Texas City Limits

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Feb 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Houston, Texas (2023). Houston, Texas City Limits [Dataset]. https://koordinates.com/layer/112439-houston-texas-city-limits/
    Explore at:
    mapinfo mif, shapefile, dwg, kml, csv, geopackage / sqlite, mapinfo tab, geodatabase, pdfAvailable download formats
    Dataset updated
    Feb 3, 2023
    Dataset authored and provided by
    City of Houston, Texas
    Area covered
    Description

    Vector polygon map data of city limits from Houston, Texas containing 754 features.

    City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.

    By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..

    This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.

  16. d

    2019 Cartographic Boundary KML, 2010 Urban Areas (UA) within 2010 County and...

    • catalog.data.gov
    Updated Jan 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2019 Cartographic Boundary KML, 2010 Urban Areas (UA) within 2010 County and Equivalent for Texas, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2019-cartographic-boundary-kml-2010-urban-areas-ua-within-2010-county-and-equivalent-for-texas-
    Explore at:
    Dataset updated
    Jan 15, 2021
    Area covered
    Texas
    Description

    The 2019 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.

  17. U.S. metro areas - ranked by Gross Metropolitan Product (GMP) 2021

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. metro areas - ranked by Gross Metropolitan Product (GMP) 2021 [Dataset]. https://www.statista.com/statistics/183808/gmp-of-the-20-biggest-metro-areas/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    United States
    Description

    This statistic provides projected figures for the Gross Metropolitan Product (GMP) of the United States in 2021, by metropolitan area. Only the 100 leading metropolitan areas are shown here. In 2022, the GMP of the New York-Newark-Jersey City metro area is projected to be around of about 2.16 trillion U.S. dollars.

    Los Angeles metropolitan area

    A metropolitan area in the U.S. is characterized by a relatively high population density and close economic ties through the area, albeit, without the legal incorporation that is found within cities. The Gross Metropolitan Product is measured by the Bureau of Economic Analysis under the U.S. Department of Commerce and includes only metropolitan areas. The GMP of the Los Angeles-Long Beach-Anaheim metropolitan area located in California is projected to be among the highest in the United States in 2021, amounting to 1.1 trillion U.S. dollars. The Houston-The Woodlands-Sugar Land, Texas metro area is estimated to be approximately 543 billion U.S. dollars in the same year.

    The Los Angeles metro area had one of the largest populations in the country, totaling 112.99 million people in 2021. The Greater Los Angeles region has one of the largest economies in the world and is the U.S. headquarters of many international car manufacturers including Honda, Mazda, and Hyundai. Its entertainment industry has generated plenty of tourism and includes world famous beaches, shopping, motion picture studios, and amusement parks. The Hollywood district is known as the “movie capital of the U.S.” and has its historical roots in the country’s film industry. Its port, the Port of Los Angeles and the Port of Long Beach are aggregately one of the world’s busiest ports. The Port of Los Angelesgenerated some 506.43 million U.S. dollars in revenue in 2019.

  18. Data from: Victims' Ratings of Police Services in New York and Texas,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Victims' Ratings of Police Services in New York and Texas, 1994-1995 Survey [Dataset]. https://catalog.data.gov/dataset/victims-ratings-of-police-services-in-new-york-and-texas-1994-1995-survey-ac5ab
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    New York, Texas
    Description

    The Family Violence Prevention and Services Act of 1984 (FVPSA) provided funding, through the Office of Victims of Crime in the United States Department of Justice, for 23 law enforcement training projects across the nation from 1986 to 1992. FVPSA was enacted to assist states in (1) developing and maintaining programs for the prevention of family violence and for the provision of shelter to victims and their dependents and (2) providing training and technical assistance for personnel who provide services for victims of family violence. The National Institute of Justice awarded a grant to the Urban Institute in late 1992 to evaluate the police training projects. One of the program evaluation methods the Urban Institute used was to conduct surveys of victims in New York and Texas. The primary objectives of the survey were to find out, from victims who had contact with law enforcement officers in the pre-training period and/or in the post-training period, what their experiences and evaluations of law enforcement services were, how police interventions had changed over time, and how the quality of services and changes related to the police training funded under the FVPSA. Following the conclusion of training, victims of domestic assault in New York and Texas were surveyed through victim service programs across each state. Similar, but not identical, instruments were used at the two sites. Service providers were asked to distribute the questionnaires to victims of physical or sexual abuse who had contact with law enforcement officers. The survey instruments were developed to obtain information and victim perceptions of the following key subject areas: history of abuse, characteristics of the victim-abuser relationship, demographic characteristics of the abuser and the victim, history of law enforcement contacts, services received from law enforcement officers, and victims' evaluations of these services. Variables on history of abuse include types of abuse experienced, first and last time physically or sexually abused, and frequency of abuse. Characteristics of the victim-abuser relationship include length of involvement with the abuser, living arrangement and relationship status at time of last abuse, number of children the victim had, and number of children at home at the time of last abuse. Demographic variables provide age, race/ethnicity, employment status, and education level of the abuser and the victim. Variables on the history of law enforcement contacts and services received include number of times law enforcement officers were called because of assaults on the victim, number of times law enforcement officers actually came to the scene, first and last time officers came to the scene, number of times officers were involved because of assaults on the victim, number of times officers were involved in the last 12 months, and type of law enforcement agencies the officers were from. Data are also included on city size by population, city median household income, county population density, county crime rate, and region of state of the responding law enforcement agencies. Over 30 variables record the victims' evaluations of the officers' responsiveness, helpfulness, and attitudes.

  19. Growth and Yield Data for the Bushland, Texas, Cotton Datasets

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated May 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2024). Growth and Yield Data for the Bushland, Texas, Cotton Datasets [Dataset]. https://catalog.data.gov/dataset/growth-and-yield-data-for-the-bushland-texas-cotton-datasets-7e1e5
    Explore at:
    Dataset updated
    May 2, 2024
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Area covered
    Bushland
    Description

    This dataset consists of growth and yield data for each season when upland cotton [Gossympium hirsutum (L.)] was grown for lint and seed at the USDA-ARS Conservation and Production Research Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU), Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). In the 2000 through 2004, 2008, 2010, 2012, and 2020 seasons, cotton was grown on from one to four large, precision weighing lysimeters, each in the center of a 4.44 ha square field also planted to cotton. The square fields were themselves arranged in a larger square with four fields in four adjacent quadrants of the larger square. Fields and lysimeters within each field were thus designated northeast (NE), southeast (SE), northwest (NW), and southwest (SW). Cotton was grown on different combinations of fields in different years. When irrigated, irrigation was by linear move sprinkler system years before 2014, and by both sprinkler and subsurface drip irrigation in 2020. Irrigation protocols described as full were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. Irrigation protocols described as deficit typically involved irrigation at rates established as percentages of full irrigation ranging from 33% to 75% depending on the year. The growth and yield data typically include plant population density, height, plant row width, leaf area index, growth stage, total above-ground biomass, leaf and stem biomass, boll mass (when present), lint mass, seed mass, final yield, and lint quality. Data are from replicate samples in the field and non-destructive (except for final harvest) measurements on the weighing lysimeters. In most cases yield data are available from only manual sampling on replicate plots in each field and lysimeters. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. Prior publications have focused on cotton ET, crop coefficients, crop water productivity, and simulation modeling of crop water use, growth, and yield. Crop coefficients have been used by ET networks. The data have utility for testing simulation models of crop ET, growth, and yield and have been used for testing, and calibrating models of ET that use satellite and/or weather data. See the README for descriptions of each data file.

  20. g

    Growth and Yield Data for the Bushland, Texas, Soybean Datasets

    • gimi9.com
    • agdatacommons.nal.usda.gov
    • +1more
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Growth and Yield Data for the Bushland, Texas, Soybean Datasets [Dataset]. https://gimi9.com/dataset/data-gov_growth-and-yield-data-for-the-bushland-texas-soybean-datasets-f8416
    Explore at:
    Dataset updated
    Dec 4, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Bushland, Texas
    Description

    This dataset consists of growth and yield data for each season when soybean [Glycine max (L.) Merr.] was grown for seed at the USDA-ARS Conservation and Production Laboratory (CPRL), Soil and Water Management Research Unit (SWMRU) research weather station, Bushland, Texas (Lat. 35.186714°, Long. -102.094189°, elevation 1170 m above MSL). In the 1994, 2003, 2004, and 2010 seasons, soybean was grown on two large, precision weighing lysimeters, each in the center of a 4.44 ha square field. In 2019, soybean was grown on four large, precision weighing lysimeters and their surrounding 4.4 ha fields. The square fields are themselves arranged in a larger square with four fields in four adjacent quadrants of the larger square. Fields and lysimeters within each field are thus designated northeast (NE), southeast (SE), northwest (NW), and southwest (SW). Soybean was grown on different combinations of fields in different years. Irrigation was by linear move sprinkler system in 1995, 2003, 2004, and 2010 although in 2010 only one irrigation was applied to establish the crop after which it was grown as a dryland crop. Irrigation protocols described as full were managed to replenish soil water used by the crop on a weekly or more frequent basis as determined by soil profile water content readings made with a neutron probe to 2.4-m depth in the field. Irrigation protocols described as deficit typically involved irrigations to establish the crop early in the season, followed by reduced or absent irrigations later in the season (typically in the later winter and spring). The growth and yield data include plant population density, height, plant row width, leaf area index, growth stage, total above-ground biomass, leaf and stem biomass, head mass (when present), kernel or seed number, and final yield. Data are from replicate samples in the field and non-destructive (except for final harvest) measurements on the weighing lysimeters. In most cases yield data are available from both manual sampling on replicate plots in each field and from machine harvest. Machine harvest yields are commonly smaller than hand harvest yields due to combine losses. These datasets originate from research aimed at determining crop water use (ET), crop coefficients for use in ET-based irrigation scheduling based on a reference ET, crop growth, yield, harvest index, and crop water productivity as affected by irrigation method, timing, amount (full or some degree of deficit), agronomic practices, cultivar, and weather. Prior publications have focused on soybean ET, crop coefficients, and crop water productivity. Crop coefficients have been used by ET networks. The data have utility for testing simulation models of crop ET, growth, and yield and have been used for testing, and calibrating models of ET that use satellite and/or weather data. See the README for descriptions of each data file. Resources in this dataset: Resource Title: 1995 Bushland, TX, west soybean growth and yield data. File Name: 1995 West Soybean_Growth_and_Yield-V2.xlsxResource Title: 2003 Bushland, TX, east soybean growth and yield data. File Name: 2003 East Soybean_Growth_and_Yield-V2.xlsxResource Title: 2004 Bushland, TX, east soybean growth and yield data. File Name: 2004 East Soybean_Growth-and_Yield-V2.xlsxResource Title: 2019 Bushland, TX, east soybean growth and yield data. File Name: 2019 East Soybean_Growth_and_Yield-V2.xlsxResource Title: 2019 Bushland, TX, west soybean growth and yield data. File Name: 2019 West Soybean_Growth_and_Yield-V2.xlsxResource Title: 2010 Bushland, TX, west soybean growth and yield data. File Name: 2010 West_Soybean_Growth_and_Yield-V2.xlsxResource Title: README. File Name: README_Soybean_Growth_and_Yield.txt

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Population density in Texas 1960-2018 [Dataset]. https://www.statista.com/statistics/304707/texas-population-density/
Organization logo

Population density in Texas 1960-2018

Explore at:
Dataset updated
Dec 7, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

This graph shows the population density in the federal state of Texas from 1960 to 2018. In 2018, the population density of Texas stood at 109.9 residents per square mile of land area.

Search
Clear search
Close search
Google apps
Main menu