54 datasets found
  1. Wildfire Risk to Communities Housing Unit Density (Image Service)

    • catalog.data.gov
    • s.cnmilf.com
    • +5more
    Updated Nov 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Wildfire Risk to Communities Housing Unit Density (Image Service) [Dataset]. https://catalog.data.gov/dataset/wildfire-risk-to-communities-housing-unit-density-image-service-fac22
    Explore at:
    Dataset updated
    Nov 2, 2024
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  2. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  3. a

    Population Density

    • ethiopia.africageoportal.com
    • africageoportal.com
    Updated May 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). Population Density [Dataset]. https://ethiopia.africageoportal.com/maps/3373ae27a2524994aeb794a10b31b0e2
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    Population density is a measurement of population per unit area or unit volume. It is frequently applied to living organisms, and particularly to humans. It is a key geographic term. (Wikipedia)

  4. d

    Data from: Attributes for NHDplus Catchments (Version 1.1) for the...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000 [Dataset]. https://catalog.data.gov/dataset/attributes-for-nhdplus-catchments-version-1-1-for-the-conterminous-united-states-populatio
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  5. Data from: Coweeta site, station Ashe County, NC (FIPS 37009), study of...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-University Consortium for Political and Social Research; Michael R. Haines; U.S. Bureau of the Census; Christopher Boone; Ted Gragson; Nichole Rosamilia; EcoTrends Project (2015). Coweeta site, station Ashe County, NC (FIPS 37009), study of human population density in units of numberPerKilometerSquared on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F3814%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Inter-University Consortium for Political and Social Research; Michael R. Haines; U.S. Bureau of the Census; Christopher Boone; Ted Gragson; Nichole Rosamilia; EcoTrends Project
    Time period covered
    Jan 1, 1880 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Coweeta (CWT) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.

  6. Urban and Rural Population Dot Density Patterns in the US (2020 Census)

    • data-bgky.hub.arcgis.com
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Urban and Rural Population Dot Density Patterns in the US (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/datasets/esri::urban-and-rural-population-dot-density-patterns-in-the-us-2020-census
    Explore at:
    Dataset updated
    Jun 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map uses dot density patterns to indicate which population is larger in each area: urban (green) or rural (blue). Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico.The U.S. Census designates each census block as part of an urban area or as rural. Larger geographies in this map such as block group, tract, county and state can therefore have a mix of urban and rural population. This map illustrates the 100% urban areas with all green dots, and 100% rural areas in dark blue dots. Areas with mixed urban/rural population have a proportional mix of green and blue dots to give a visual indication of where change may be happening. From the Census:"The Census Bureau’s urban-rural classification is a delineation of geographic areas, identifying both individual urban areas and the rural area of the nation. The Census Bureau’s urban areas represent densely developed territory, and encompass residential, commercial, and other non-residential urban land uses. The Census Bureau delineates urban areas after each decennial census by applying specified criteria to decennial census and other data. Rural encompasses all population, housing, and territory not included within an urban area.For the 2020 Census, an urban area will comprise a densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or have a population of at least 5,000." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  7. U

    07: Population density in 15 watersheds in Gwinnett County, Georgia from...

    • data.usgs.gov
    • catalog.data.gov
    Updated Apr 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brent Aulenbach; Joshua Henley; Kristina Hopkins (2023). 07: Population density in 15 watersheds in Gwinnett County, Georgia from 2000 to 2020 [Dataset]. http://doi.org/10.5066/P9G8HZTY
    Explore at:
    Dataset updated
    Apr 4, 2023
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Brent Aulenbach; Joshua Henley; Kristina Hopkins
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2000 - 2020
    Area covered
    Gwinnett County, Georgia
    Description

    This dataset contains population densities of 15 study watersheds in Gwinnett County, Georgia from 2000 to 2020. Population densities were determined for 2000, 2010, and 2020 from the decadal U.S. Census and for 2012 and 2017 from the American Community Survey 5-year estimates of 2010-14 and 2015¬-19 block group data, respectively. Population density within each watershed was determined by clipping the census block group data by the watershed boundaries and area-weighting the block group population density data within each watershed. Census block group data is the smallest geographic unit for which the census provides data.

  8. Gridded Population of the World, Version 3 (GPWv3): Land and Geographic Unit...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • data.nasa.gov
    • +3more
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Gridded Population of the World, Version 3 (GPWv3): Land and Geographic Unit Area Grids [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/gridded-population-of-the-world-version-3-gpwv3-land-and-geographic-unit-area-grids
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    World, Earth
    Description

    The Gridded Population of the World, Version 3 (GPWv3): Land and Geographic Unit Area Grids measure land areas in square kilometers and the mean Unit size (population-weighted) in square kilometers. The land area grid permits the summation of areas (net of permanent ice and water) at the same resolution as the population density, count, and urban-rural grids. The mean Unit size grids provides a quantitative surface that indicates the size of the input Unit(s) from which population count and density grids are derived..GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).

  9. Ghana: High Resolution Population Density Maps + Demographic Estimates -...

    • ckan.africadatahub.org
    Updated Jun 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.africadatahub.org (2021). Ghana: High Resolution Population Density Maps + Demographic Estimates - Datasets - ADH Data Portal [Dataset]. https://ckan.africadatahub.org/dataset/ghana-high-resolution-population-density-maps-demographic-estimates
    Explore at:
    Dataset updated
    Jun 9, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ghana
    Description

    VERSION 1.5. The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Ghana: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here

  10. Tuva, Republic of Population density

    • knoema.com
    csv, json, sdmx, xls
    Updated Jun 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2017). Tuva, Republic of Population density [Dataset]. https://knoema.com/atlas/Russian-Federation/Tuva-Republic-of/Population-density
    Explore at:
    json, csv, sdmx, xlsAvailable download formats
    Dataset updated
    Jun 13, 2017
    Dataset authored and provided by
    Knoemahttp://knoema.com/
    Time period covered
    2005 - 2016
    Area covered
    Tuva Republic
    Variables measured
    Population density
    Description

    Population density of Tuva, Republic of went up by 0.76% from 1.87 people per sq. km in 2015 to 1.88 people per sq. km in 2016. Population density is the number of individuals per unit geographic area, for example, number per square meter, per hectare, or per square kilometer.

  11. d

    Gridded Population of the World, Version 3 (GPWv3): Population Density Grid

    • catalog.data.gov
    • gimi9.com
    • +4more
    Updated Dec 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2023). Gridded Population of the World, Version 3 (GPWv3): Population Density Grid [Dataset]. https://catalog.data.gov/dataset/gridded-population-of-the-world-version-3-gpwv3-population-density-grid
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    SEDAC
    Area covered
    World, Earth
    Description

    The Gridded Population of the World, Version 3 (GPWv3): Population Density Grid consists of estimates of human population for the years 1990, 1995, and 2000 by 2.5 arc-minute grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 300,000 national and sub-national administrative Units, is used to assign population values to grid cells. The population density grids are derived by dividing the population count grids by the land area grid and represent persons per square kilometer. The grids are available in various GIS-compatible data formats and geographic extents (global, continent [Antarctica not included], and country levels). GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).

  12. Data from: Konza Prairie site, station Greenwood County, KS (FIPS 20073),...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Boone; Michael R. Haines; Inter-University Consortium for Political and Social Research; Ted Gragson; U.S. Bureau of the Census; Nichole Rosamilia; EcoTrends Project (2015). Konza Prairie site, station Greenwood County, KS (FIPS 20073), study of human population density in units of numberPerKilometerSquared on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F10153%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Christopher Boone; Michael R. Haines; Inter-University Consortium for Political and Social Research; Ted Gragson; U.S. Bureau of the Census; Nichole Rosamilia; EcoTrends Project
    Time period covered
    Jan 1, 1880 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Konza Prairie (KNZ) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.

  13. Data from: Sevilleta site, station Sandoval County, NM (FIPS 35043), study...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ted Gragson; Inter-University Consortium for Political and Social Research; U.S. Bureau of the Census; Michael R. Haines; Christopher Boone; Nichole Rosamilia; EcoTrends Project (2015). Sevilleta site, station Sandoval County, NM (FIPS 35043), study of human population density in units of numberPerKilometerSquared on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F12995%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Ted Gragson; Inter-University Consortium for Political and Social Research; U.S. Bureau of the Census; Michael R. Haines; Christopher Boone; Nichole Rosamilia; EcoTrends Project
    Time period covered
    Jan 1, 1910 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Sevilleta (SEV) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.

  14. GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version...

    • zenodo.org
    tiff
    Updated Sep 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie (2024). GlobPOP: A 33-year (1990-2022) global gridded population dataset (Version 2.0-test-alpha) [Dataset]. http://doi.org/10.5281/zenodo.11071249
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Sep 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Luling Liu; Xin Cao; Xin Cao; Shijie Li; Na Jie; Luling Liu; Shijie Li; Na Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Usage Notice

    This version is not recommended for download. Please check the newest version.

    We would like to inform you that the updated GlobPOP dataset (2021-2022) have been available in version 2.0. The GlobPOP dataset (2021-2022) in the current version is not recommended for your work. The GlobPOP dataset (1990-2020) in the current version is the same as version 1.0.

    Thank you for your continued support of the GlobPOP.

    If you encounter any issues, please contact us via email at lulingliu@mail.bnu.edu.cn.

    Introduction

    Continuously monitoring global population spatial dynamics is essential for implementing effective policies related to sustainable development, such as epidemiology, urban planning, and global inequality.

    Here, we present GlobPOP, a new continuous global gridded population product with a high-precision spatial resolution of 30 arcseconds from 1990 to 2020. Our data-fusion framework is based on cluster analysis and statistical learning approaches, which intends to fuse the existing five products(Global Human Settlements Layer Population (GHS-POP), Global Rural Urban Mapping Project (GRUMP), Gridded Population of the World Version 4 (GPWv4), LandScan Population datasets and WorldPop datasets to a new continuous global gridded population (GlobPOP). The spatial validation results demonstrate that the GlobPOP dataset is highly accurate. To validate the temporal accuracy of GlobPOP at the country level, we have developed an interactive web application, accessible at https://globpop.shinyapps.io/GlobPOP/, where data users can explore the country-level population time-series curves of interest and compare them with census data.

    With the availability of GlobPOP dataset in both population count and population density formats, researchers and policymakers can leverage our dataset to conduct time-series analysis of population and explore the spatial patterns of population development at various scales, ranging from national to city level.

    Data description

    The product is produced in 30 arc-seconds resolution(approximately 1km in equator) and is made available in GeoTIFF format. There are two population formats, one is the 'Count'(Population count per grid) and another is the 'Density'(Population count per square kilometer each grid)

    Each GeoTIFF filename has 5 fields that are separated by an underscore "_". A filename extension follows these fields. The fields are described below with the example filename:

    GlobPOP_Count_30arc_1990_I32

    Field 1: GlobPOP(Global gridded population)
    Field 2: Pixel unit is population "Count" or population "Density"
    Field 3: Spatial resolution is 30 arc seconds
    Field 4: Year "1990"
    Field 5: Data type is I32(Int 32) or F32(Float32)

    More information

    Please refer to the paper for detailed information:

    Liu, L., Cao, X., Li, S. et al. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci Data 11, 124 (2024). https://doi.org/10.1038/s41597-024-02913-0.

    The fully reproducible codes are publicly available at GitHub: https://github.com/lulingliu/GlobPOP.

  15. Central African Republic: High Resolution Population Density Maps +...

    • ckan.africadatahub.org
    Updated Jun 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.africadatahub.org (2022). Central African Republic: High Resolution Population Density Maps + Demographic Estimates - Datasets - ADH Data Portal [Dataset]. https://ckan.africadatahub.org/dataset/central-african-republic-high-resolution-population-density-maps-demographic-estimates
    Explore at:
    Dataset updated
    Jun 27, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Central African Republic
    Description

    The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Central African Republic: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here

  16. Data from: Florida Coastal Everglades site, station Monroe County, FL (FIPS...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-University Consortium for Political and Social Research; Christopher Boone; Ted Gragson; U.S. Bureau of the Census; Nichole Rosamilia; Michael R. Haines; EcoTrends Project (2015). Florida Coastal Everglades site, station Monroe County, FL (FIPS 12087), study of human population density in units of numberPerKilometerSquared on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F6615%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Inter-University Consortium for Political and Social Research; Christopher Boone; Ted Gragson; U.S. Bureau of the Census; Nichole Rosamilia; Michael R. Haines; EcoTrends Project
    Time period covered
    Jan 1, 1880 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Florida Coastal Everglades (FCE) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.

  17. Gambia: High Resolution Population Density Maps + Demographic Estimates -...

    • ckan.africadatahub.org
    Updated Jun 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.africadatahub.org (2022). Gambia: High Resolution Population Density Maps + Demographic Estimates - Datasets - ADH Data Portal [Dataset]. https://ckan.africadatahub.org/dataset/gambia-high-resolution-population-density-maps-demographic-estimates
    Explore at:
    Dataset updated
    Jun 29, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    The Gambia
    Description

    The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Gambia: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here

  18. n

    Gridded Population of the World, Version 3 (GPWv3): Centroids

    • earthdata.nasa.gov
    • s.cnmilf.com
    • +3more
    Updated Dec 31, 2005
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2005). Gridded Population of the World, Version 3 (GPWv3): Centroids [Dataset]. http://doi.org/10.7927/H4TT4NWQ
    Explore at:
    Dataset updated
    Dec 31, 2005
    Dataset authored and provided by
    SEDAC
    Area covered
    Earth
    Description

    The Gridded Population of the World, Version 3 (GPWv3): Centroids consists of estimates of human population counts and densities for the years 1990, 1995, 2000, 2005, 2010, and 2015 by administrative Unit centroid location. The centroids are based on the 399,781 input administrative Units used in GPWv3. In addition to population counts and variables, the centroids have associated administrative Unit names and the land area of contained within the administrative Unit. GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).

  19. Primorsky Krai Population density

    • jp.knoema.com
    • knoema.de
    • +2more
    csv, json, sdmx, xls
    Updated Jun 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2017). Primorsky Krai Population density [Dataset]. https://jp.knoema.com/atlas/%E3%83%AD%E3%82%B7%E3%82%A2%E9%80%A3%E9%82%A6/Primorsky-Krai/Population-density
    Explore at:
    csv, xls, json, sdmxAvailable download formats
    Dataset updated
    Jun 13, 2017
    Dataset authored and provided by
    Knoemahttp://knoema.com/
    Time period covered
    2005 - 2016
    Area covered
    Primorsky Krai, Russia
    Variables measured
    Population density
    Description

    11.69 (People per sq. km) in 2016. Population density is the number of individuals per unit geographic area, for example, number per square meter, per hectare, or per square kilometer.

  20. Harvard Forest site, station Caledonia County, VT (FIPS 50005), study of...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ted Gragson; Nichole Rosamilia; Christopher Boone; U.S. Bureau of the Census; Michael R. Haines; Inter-University Consortium for Political and Social Research; EcoTrends Project (2015). Harvard Forest site, station Caledonia County, VT (FIPS 50005), study of human population density in units of numberPerKilometerSquared on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F8698%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Ted Gragson; Nichole Rosamilia; Christopher Boone; U.S. Bureau of the Census; Michael R. Haines; Inter-University Consortium for Political and Social Research; EcoTrends Project
    Time period covered
    Jan 1, 1880 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Harvard Forest (HFR) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Forest Service (2024). Wildfire Risk to Communities Housing Unit Density (Image Service) [Dataset]. https://catalog.data.gov/dataset/wildfire-risk-to-communities-housing-unit-density-image-service-fac22
Organization logo

Wildfire Risk to Communities Housing Unit Density (Image Service)

Explore at:
Dataset updated
Nov 2, 2024
Dataset provided by
U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
Description

The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

Search
Clear search
Close search
Google apps
Main menu