This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?
This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.
This layer is sourced from maps.bts.dot.gov.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: S Wicklund, educator, Minnesota Alliance for Geographic EducationGrade/Audience: high schoolResource type: lessonSubject topic(s): population, mapsRegion: worldStandards: Minnesota Social Studies Standards
Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.
Standard 3. Places have physical characteristics (such as climate, topography and vegetation) and human characteristics (such as culture, population, political and economic systems).
Standard 5. The characteristics, distribution and migration of human populations on the earth’s surface influence human systems (cultural, economic and political systems).Objectives: Students will be able to:
This layer shows Veteran Counts by Sex and Age Group by Census Tract for 2012-2016. This tile layer is best viewed atop a darker basemap such as the Dark Blue Canvas. Click here to view the feature layer that includes margin of error fields and calculated percentages.There are currently over 19.6 million veterans in the United States.Data came from American Community Survey 5-year estimates and were retrieved from the Census Bureau's API on Sept. 27th, 2017 by Diana Lavery.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This web map is provides the data and maps used in the story map Population density and diversity in New Zealand, created by Stats NZ. It uses Statistical Area 1 (SA1) data collected and published as part of the 2018 Census. The web map uses a mapping technique called multi-variate dot density mapping. The data used in the map can be found at this web service - 2018 Census Individual part 1 data by SA1.For questions or comments on the data or maps, please contact info@stats.govt.nz Census Data Quality Notes:We combined data from the census forms with administrative data to create the 2018 Census dataset, which meets Stats NZ’s quality criteria for population structure information.We added real data about real people to the dataset where we were confident the people should be counted but hadn’t completed a census form. We also used data from the 2013 Census and administrative sources and statistical imputation methods to fill in some missing characteristics of people and dwellings.Data quality for 2018 Census provides more information on the quality of the 2018 Census data.An independent panel of experts has assessed the quality of the 2018 Census dataset. The panel has endorsed Stats NZ’s overall methods and concluded that the use of government administrative records has improved the coverage of key variables such as age, sex, ethnicity, and place. The panel’s Initial Report of the 2018 Census External Data Quality Panel (September 2019), assessed the methodologies used by Stats NZ to produce the final dataset, as well as the quality of some of the key variables. Its second report 2018 Census External Data Quality Panel: Assessment of variables (December 2019) assessed an additional 31 variables. In its third report, Final report of the 2018 Census External Data Quality Panel (February 2020), the panel made 24 recommendations, several relating to preparations for the 2023 Census. Along with this report, the panel, supported by Stats NZ, produced a series of graphs summarising the sources of data for key 2018 Census individual variables, 2018 Census External Data Quality Panel: Data sources for key 2018 Census individual variables.The Quick guide to the 2018 Census outlines the key changes we introduced as we prepared for the 2018 Census, and the changes we made once collection was complete.The geographic boundaries are as at 1 January 2018. See Statistical standard for geographic areas 2018.2018 Census – DataInfo+ provides information about methods, and related metadata.Data quality ratings for 2018 Census variables provides information on data quality ratings.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 2nd Edition (1915) of the Atlas of Canada is a plate that shows two maps. The first map shows the density of population per square mile for every township in the Maritime Provinces and Quebec, circa 1911. The second map shows the density of population per square mile for every township in Quebec and Ontario, circa 1911. Communities with a population greater than 5000 people are shown as proportional dots on the map. In addition, major railway systems displayed.
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population, and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSAs for the 2010 Census are those defined by OMB and published in December 2009.
© The United States CBSA Boundaries files were compiled from a variety of sources including the US Bureau of the Census, and data supplied by individual states. This layer is sourced from maps.bts.dot.gov.
Supermarkets are one of the most popular and convenient ways in which Americans gain access to healthy food, such as fresh meat and fish, or fresh fruits and vegetables. There are various ways in which people gain access to supermarkets. People in the suburbs drive to supermarkets and load up the car with many bags of food. People in cities depend much more on walking to the local store, or taking a bus or train.This map came about after asking a simple question: how many Americans live within a reasonable walk or drive to a supermarket?In this case, "reasonable" was defined as a 10 minute drive, or a 1 mile walk. The ArcGIS Network Analyst extension performed the calculations on streets data from StreetMap Premium, and the ArcGIS Spatial Analyst extension created a heat map of the walkable access and drivable access to supermarkets.The green dots represent populations in poverty who live within one mile of a supermarket. The red dots represent populations in poverty who live beyond a one mile walk to a supermarket, but may live within a 10 minute drive...which presumes they have access to a car or public transit. The grey dots represent the total population in a given area.This is an excellent map to use as backdrop to show how people are improving access to healthy food in their community. Open this map in ArcGIS Pro or ArcGIS Online to use it as a backdrop to your local analysis work. Or open it in ArcGIS Explorer to add your favorite farmers' market, CSA, or transit line -- then share that map via Facebook, Twitter or email.This map shows data for the entire U.S. The supermarkets included in the analysis have annual sales of $1 million or more.Data source: see this map package.
Each year, the Forecasting and Trends Office (FTO) publishes population estimates and future year projections. The population estimates can be used for a variety of planning studies including statewide and regional transportation plan updates, subarea and corridor studies, and funding allocations for various planning agencies.The 2021 population estimates are based on the population estimates developed by the Bureau of Economic and Business Research (BEBR) at the University of Florida. BEBR uses the decennial census count for April 1, 2020, as the starting point for state-level projections. More information is available from BEBR here.This dataset contains county boundaries in the State of Florida with 2021 population density estimates. All legal boundaries and names in this dataset are from the US Census Bureau’s TIGER/Line Files (2021). Please see the Data Dictionary for more information on data fields. Data Sources:FDOT FTO 2020 and 2021 Population Estimates by CountyUS Census Bureau 2020 Decennial CensusUS Census Bureau’s TIGER/Line Files (2021)Bureau of Economic and Business Research (BEBR) – Florida Estimates of Population 2021 Data Coverage: StatewideData Time Period: 2021 Date of Publication: October 2022 Point of Contact:Dana Reiding, ManagerForecasting and Trends OfficeFlorida Department of TransportationDana.Reiding@dot.state.fl.us605 Suwannee Street, Tallahassee, Florida 32399850-414-4719
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
In the map, each dot represents 100 people in four race categories: white (non-Hispanic), black (non-Hispanic), Hispanic/Latino, and Asian/Pacific Islander. Thus, the map also depicts population densities throughout the region. While the rural/ suburban areas in the region have largely white populations, many urban/densely populated areas in the region are racially diverse, with two or more ethnicities living in relatively non-segregated neighborhoods.
Interactive web map to view, query, and download ferry terminal and segment data
This map layer includes cities and towns in the United States, Puerto Rico, and the U.S. Virgin Islands. A city or town is a place with a recorded population, usually with at least one central area that provides commercial activities. Cities are generally larger than towns; no distinction is made between cities and towns in this map layer.
This layer is a component of Populated Places.
This map layer includes cities and towns in the United States, Puerto Rico, and the U.S. Virgin Islands (NTAD 2015). A city or town is a place with a recorded population, usually with at least one central area that provides commercial activities. Cities are generally larger than towns; no distinction is made between cities and towns in this map layer.
© The National Atlas
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 2nd Edition (1915) of the Atlas of Canada is a plate that shows two maps. The first map shows the density of population per square mile for every township in British Columbia and Alberta, circa 1911. The second map shows the density of population per square mile for every township in Manitoba and Saskatchewan, circa 1911. Communities with a population greater than 5000 people are shown as proportional dots on the map. In addition, major railway systems displayed. The map displays the rectangular survey system which records the land that is available to the public. This grid like system is divided into sections, townships, range, and meridian from mid-Manitoba to Alberta.
This map shows the diversity index of the population in the USA in 2010 by block group. "The diversity index summarizes racial and ethnic diversity. The index shows the likelihood that two people, chosen at random from the same area, belong to different race or ethnic groups. The index ranges from 0 (no diversity) to 100 (complete diversity). For example, a diversity index of 59 means there is a 59 percent probability that two people randomly chosen would belong to different race or ethnic groups." -Esri DemographicsIt calls to the 2010 Census service with attributes related to race and ethnicity. The field PctNonWhite calculates the total percentage of non-white population by subtracting the Total white population from the reported population total. This yields the total non-white population (Field "TotNonWhite"). This number was then divided by the total reported population and multipled by 100 to yield a percetage of the population that is non-white (Field "PctNonWhite"). Original data sourced from: https://tpc.maps.arcgis.com/home/item.html?id=04a8fbbf59aa48ebbc646ba2bc8d9b1c
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
How were cities distributed globally in the past? How many people lived in these cities? How did cities influence their local and regional environments? This month's map seeks to answer these questions by illustrating the worlds population growth within cities over a span of 6,000 years.According to the map authors, By 2030, 75 percent of of the world's population is expected to be living in cities. Today, about 54 percent of us do. In 1960, only 34 percent of the world lived in cities.The dots on the map represent the approximate location and size of urban populations worldwide.An animated version showing the development of cities over time is available at https://mtc.maps.arcgis.com/apps/Cascade/index.html?appid=fb8666425e0c44a2a77c5bb84ceec6efSource: Metrocosm, June 2016 - Watch as the world’s cities appear one-by-one over 6,000 years
This file contains the US county estimates of the noise cost from roads within that county, population counts for different demographics, estimates of how much noise cost from roads each demographic is absorbing, and the noise-equity ratio for each demographic--the percent of noise cost borne divided by the percent of population within the county. The cost of noise pollution is estimated in a separate shapefile and the results are aggregated together through FHWA's Inequity Identification Tool (IIT). For more information on this data please visit: https://maps.dot.gov/fhwa/iit/
This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.
This layer is sourced from maps.bts.dot.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
We are enclosing the database used in our research titled "Concentration and Geospatial Modelling of Health Development Offices' Accessibility for the Total and Elderly Populations in Hungary", along with our statistical calculations. For the sake of reproducibility, further information can be found in the file Short_Description_of_Data_Analysis.pdf and Statistical_formulas.pdf
The sharing of data is part of our aim to strengthen the base of our scientific research. As of March 7, 2024, the detailed submission and analysis of our research findings to a scientific journal has not yet been completed.
The dataset was expanded on 23rd September 2024 to include SPSS statistical analysis data, a heatmap, and buffer zone analysis around the Health Development Offices (HDOs) created in QGIS software.
Short Description of Data Analysis and Attached Files (datasets):
Our research utilised data from 2022, serving as the basis for statistical standardisation. The 2022 Hungarian census provided an objective basis for our analysis, with age group data available at the county level from the Hungarian Central Statistical Office (KSH) website. The 2022 demographic data provided an accurate picture compared to the data available from the 2023 microcensus. The used calculation is based on our standardisation of the 2022 data. For xlsx files, we used MS Excel 2019 (version: 1808, build: 10406.20006) with the SOLVER add-in.
Hungarian Central Statistical Office served as the data source for population by age group, county, and regions: https://www.ksh.hu/stadat_files/nep/hu/nep0035.html, (accessed 04 Jan. 2024.) with data recorded in MS Excel in the Data_of_demography.xlsx file.
In 2022, 108 Health Development Offices (HDOs) were operational, and it's noteworthy that no developments have occurred in this area since 2022. The availability of these offices and the demographic data from the Central Statistical Office in Hungary are considered public interest data, freely usable for research purposes without requiring permission.
The contact details for the Health Development Offices were sourced from the following page (Hungarian National Population Centre (NNK)): https://www.nnk.gov.hu/index.php/efi (n=107). The Semmelweis University Health Development Centre was not listed by NNK, hence it was separately recorded as the 108th HDO. More information about the office can be found here: https://semmelweis.hu/egeszsegfejlesztes/en/ (n=1). (accessed 05 Dec. 2023.)
Geocoordinates were determined using Google Maps (N=108): https://www.google.com/maps. (accessed 02 Jan. 2024.) Recording of geocoordinates (latitude and longitude according to WGS 84 standard), address data (postal code, town name, street, and house number), and the name of each HDO was carried out in the: Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file.
The foundational software for geospatial modelling and display (QGIS 3.34), an open-source software, can be downloaded from:
https://qgis.org/en/site/forusers/download.html. (accessed 04 Jan. 2024.)
The HDOs_GeoCoordinates.gpkg QGIS project file contains Hungary's administrative map and the recorded addresses of the HDOs from the
Geo_coordinates_and_names_of_Hungarian_Health_Development_Offices.csv file,
imported via .csv file.
The OpenStreetMap tileset is directly accessible from www.openstreetmap.org in QGIS. (accessed 04 Jan. 2024.)
The Hungarian county administrative boundaries were downloaded from the following website: https://data2.openstreetmap.hu/hatarok/index.php?admin=6 (accessed 04 Jan. 2024.)
HDO_Buffers.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding buffer zones with a radius of 7.5 km.
Heatmap.gpkg is a QGIS project file that includes the administrative map of Hungary, the county boundaries, as well as the HDO offices and their corresponding heatmap (Kernel Density Estimation).
A brief description of the statistical formulas applied is included in the Statistical_formulas.pdf.
Recording of our base data for statistical concentration and diversification measurement was done using MS Excel 2019 (version: 1808, build: 10406.20006) in .xlsx format.
Using the SPSS 29.0.1.0 program, we performed the following statistical calculations with the databases Data_HDOs_population_without_outliers.sav and Data_HDOs_population.sav:
For easier readability, the files have been provided in both SPV and PDF formats.
The translation of these supplementary files into English was completed on 23rd Sept. 2024.
If you have any further questions regarding the dataset, please contact the corresponding author: domjan.peter@phd.semmelweis.hu
Contained within the 3rd Edition (1957) of the Atlas of Canada is a map that shows a map of six condensed maps of employment and related patterns for the leading service sectors as compiled from the 1951 Census. There are two maps referring to wholesale trade. One of them shows the distribution of the labour force engaged in wholesale trade. This is shown by a dot pattern using one dot for every 200 people of this labour force, and using proportional symbols for all places employing 2 000 or more. The other wholesale trade map shows percentage of net value of sales from wholesale trade in each census division. There are two similar maps of retail trade. One, showing the distribution of labour force, uses the same mapping procedure as that of wholesale trade. The second map shows retail trade as a percentage of net value of sales for each census division. The fifth map shows the distribution of the construction labour force, using the same mapping concepts as for the wholesale trade map. There is an associated pie chart showing the types of construction this labour force engages in. The sixth map shows the distribution of labour force in the fire, insurance and real estate industries, again using the mapping concepts used for the wholesale trade map. This map is accompanied by a pie chart showing employment in the various industries of this group (such as in banking).
This layer is a component of Transborder.
This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?