100+ datasets found
  1. World Health Survey 2003 - Belgium

    • apps.who.int
    • catalog.ihsn.org
    • +2more
    Updated Jun 19, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Belgium [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/118
    Explore at:
    Dataset updated
    Jun 19, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Belgium
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  2. i

    Population and Family Health Survey 2023 - Jordan

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2024). Population and Family Health Survey 2023 - Jordan [Dataset]. https://catalog.ihsn.org/catalog/12217
    Explore at:
    Dataset updated
    Aug 23, 2024
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2023
    Area covered
    Jordan
    Description

    Abstract

    The 2023 Jordan Population and Family Health Survey (JPFHS) is the eighth Population and Family Health Survey conducted in Jordan, following those conducted in 1990, 1997, 2002, 2007, 2009, 2012, and 2017–18. It was implemented by the Department of Statistics (DoS) at the request of the Ministry of Health (MoH).

    The primary objective of the 2023 JPFHS is to provide up-to-date estimates of key demographic and health indicators. Specifically, the 2023 JPFHS: • Collected data at the national level that allowed calculation of key demographic indicators • Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality • Measured contraceptive knowledge and practice • Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery • Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and women age 15–49 • Conducted haemoglobin testing with eligible children age 6–59 months and women age 15–49 to gather information on the prevalence of anaemia • Collected data on women’s and men’s knowledge and attitudes regarding sexually transmitted infections and HIV/AIDS • Obtained data on women’s experience of emotional, physical, and sexual violence • Gathered data on disability among household members

    The information collected through the 2023 JPFHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Jordan.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2023 JPFHS was the 2015 Jordan Population and Housing Census (JPHC) frame. The survey was designed to produce representative results for the country as a whole, for urban and rural areas separately, for each of the country’s 12 governorates, and for four nationality domains: the Jordanian population, the Syrian population living in refugee camps, the Syrian population living outside of camps, and the population of other nationalities. Each of the 12 governorates is subdivided into districts, each district into subdistricts, each subdistrict into localities, and each locality into areas and subareas. In addition to these administrative units, during the 2015 JPHC each subarea was divided into convenient area units called census blocks. An electronic file of a complete list of all of the census blocks is available from DoS. The list contains census information on households, populations, geographical locations, and socioeconomic characteristics of each block. Based on this list, census blocks were regrouped to form a general statistical unit of moderate size, called a cluster, which is widely used in various surveys as the primary sampling unit (PSU). The sample clusters for the 2023 JPFHS were selected from the frame of cluster units provided by the DoS.

    The sample for the 2023 JPFHS was a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. In addition, the Syrian refugee camps in Zarqa and Mafraq each formed a special sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a twostage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and subdistrict within each sampling stratum. By using a probability proportional to size selection at the first stage of sampling, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.

    For further details on sample design, see APPENDIX A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Five questionnaires were used for the 2023 JPFHS: (1) the Household Questionnaire, (2) the Woman’s Questionnaire, (3) the Man’s Questionnaire, (4) the Biomarker Questionnaire, and (5) the Fieldworker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Jordan. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Arabic.

    Cleaning operations

    All electronic data files for the 2023 JPFHS were transferred via SynCloud to the DoS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July and completed in September 2023.

    Response rate

    A total of 20,054 households were selected for the sample, of which 19,809 were occupied. Of the occupied households, 19,475 were successfully interviewed, yielding a response rate of 98%.

    In the interviewed households, 13,020 eligible women age 15–49 were identified for individual interviews; interviews were completed with 12,595 women, yielding a response rate of 97%. In the subsample of households selected for the male survey, 6,506 men age 15–59 were identified as eligible for individual interviews and 5,873 were successfully interviewed, yielding a response rate of 90%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2023 Jordan Population and Family Health Survey (2023 JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2023 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2023 JPFHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables

    • Household age distribution
    • Age distribution of eligible and interviewed women
    • Age distribution of eligible and interviewed men
    • Age displacement at age 14/15
    • Age displacement at age 49/50
    • Pregnancy outcomes by years preceding the survey
    • Completeness of reporting
    • Standardization exercise results from anthropometry training
    • Height and weight data completeness and quality for children
    • Height measurements from random subsample of measured children
    • Interference in height and weight measurements of children
    • Interference in height and weight measurements of women
    • Heaping in
  3. u

    Population and Family Health Survey 2012 - Jordan

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2012
    Area covered
    Jordan
    Description

    Abstract

    The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

    The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

    Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

    Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

    The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

    In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

    The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

    Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

    Cleaning operations

    Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

    Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

    Response rate

    In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

    In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

  4. i

    Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel)...

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Strategic Marketing & Media Research Institute Group (SMMRI) (2025). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://catalog.ihsn.org/catalog/5178
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    Ministry of Social Affairs
    Strategic Marketing & Media Research Institute Group (SMMRI)
    Time period covered
    2003
    Area covered
    Serbia and Montenegro
    Description

    Abstract

    The study included four separate surveys:

    1. The LSMS survey of general population of Serbia in 2002
    2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

    3. The LSMS survey of general population of Serbia in 2003 (panel survey)

    4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

    Objectives

    LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

    The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

    Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

    Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

    Geographic coverage

    The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

    The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

    The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

    Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

    Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

    Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

    The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

    Response rate

    During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

    In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

  5. e

    Replication Data for: Building a Sampling Frame for Migrant Populations via...

    • b2find.eudat.eu
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Replication Data for: Building a Sampling Frame for Migrant Populations via an Onomastic Approach – Lesson learned from the Austrian Immigrant Survey 2016 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/aca0f671-2644-51d8-8156-e5dcca409f48
    Explore at:
    Dataset updated
    Jul 24, 2025
    Description

    Immigrants are traditionally seen as hard to survey. Their number is often too small to be analysed via data gained in general population surveys, and registers to identify them are often missing or incomplete. Therefore, researchers are forced to use alternatives for sampling. In the case of the Austrian Immigrant Survey 2016, an onomastic (name-based) approach was used, establishing a sampling frame in a two-step procedure. This article describes the concept and the implementation of the sampling and evaluates the sample that could be realised.

  6. f

    nzqa_exam_questions_contextual_population_parameter_definitions - updated

    • auckland.figshare.com
    csv
    Updated Nov 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anna Fergusson; Haozhong Wei (2024). nzqa_exam_questions_contextual_population_parameter_definitions - updated [Dataset]. http://doi.org/10.17608/k6.auckland.27644403.v1
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 11, 2024
    Dataset provided by
    The University of Auckland
    Authors
    Anna Fergusson; Haozhong Wei
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data set represents contextualised population parameter definitions extracted and developed from past NZQA Level 3 Statistics exam questions. and assessment schedules, namely those used for the achievement standards AS90642 and AS91584.The data set was developed by Haozhong Wei as part of his MSc dissertation project, under the supervision of Dr Anna Fergusson and Dr Anne Patel (University of Auckland | Waipapa Taumata Rau).An overview of the variables used in the dataset:1. Year: This variable is the year of the exam.2. Paper: This is the identifier of the paper, e.g., AS90642, indicating the specific exam to which the question belongs.3. Type: This variable indicates the type of data and usually identifies whether the entry is a question or an answer.4. Question part: This variable indicates the specific part number of the problem, e.g., 1a, 1b, 2, etc.5. Text: This is the full text of the question.6. Population parameter: A description of the parameter of the entire text.7. Parameter type: These variables further detail the type of overall parameter, such as ‘single mean’ or ‘single proportion’ or even ‘difference between two means’.

  7. CENSUS_INS21ES_A_IE_2021_0000

    • inspire-geoportal.ec.europa.eu
    atom, wmts
    Updated Jan 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistics Office of Ireland, Central Statistics Office (2021). CENSUS_INS21ES_A_IE_2021_0000 [Dataset]. https://inspire-geoportal.ec.europa.eu/srv/api/records/CENSUS_INS21ES_A_IE_2021_0000
    Explore at:
    wmts, atomAvailable download formats
    Dataset updated
    Jan 1, 2021
    Dataset provided by
    Central Statistics Office Irelandhttps://www.cso.ie/en/
    License

    http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1ahttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1a

    Area covered
    Description

    There is a requirement, as per Commission Implementing Regulation (EU) 2018/1799, to deliver Census data for the reference year 2021 to Eurostat. In September 2020, the Irish Government decided to postpone the scheduled April 2021 Census to April 2022 following a recommendation from CSO related to the impact of the Covid-19 pandemic. The CSO however has agreed that the office will still meet its legal requirement. It will base the Eurostat requirements on Census 2022 data, using administrative and other sources to appropriately adjust the data to reference year 2021. A (preliminary) headcount of usual residents at the 1 km2 grid level (there are approximately 73,000 such square kilometres in Ireland) is required by Eurostat by 31st December 2022. The data was produced in the following manner:

    Initial preliminary Census estimate for April 2022 As part of the field operation for the 2022 Census, the CSO introduced a new smartphone-based application that allowed field staff to capture information about every dwelling in the country. This application facilitated the production of a preliminary population publication less than 12 weeks (June 23rd) after census night (April 3rd). The information includes data on the number of de facto occupants. This information is provisional, and the final file will not be completed until all collected paper forms are fully processed, which is expected to be around the end of January 2023. The provisional data should however be a very strong indicator of the final results.

    The preliminary Census de facto population estimate was 5,123,536 persons, available at the 1 km2 grid level. As we need the population on a usual resident basis, it was decided to adjust this estimated de facto population at the 1 km2 grid level by applying the arithmetic differences between the 2016 usual resident and de facto population counts at that level to the de facto population for 2022. A ratio model, where rates of change of de facto to usual resident counts are applied instead of differences, was also considered but this led to more extreme adjustments, mainly where there was a large change in the population count of a cell between 2016 and 2022. This reduced the usual resident population to 5,101,268 for April 2022, a fall of 22,268 persons.

    Temporary Absent Dwellings Census also provided data on the temporarily absent dwellings dataset (at 1 km2 grid level), containing a count of persons usually resident in the State but whose entire household were abroad on census night and therefore not included in the de facto population count. This covers 33,365 temporarily absent dwellings with 50,749 temporarily absent persons across 9,138 grid cells. This category was not present in the 2016 figures so it was decided to include these absent persons as they meet the definition of usual residents and will be present in the final transmission, due March 2024. The resulting usually resident population count for 3rd April 2022 was estimated as 5,152,671 persons.

    Note that in a small number cases (80 grid cells), adjustments resulted in a negative cell value, but these were set to zero.

    Final preliminary estimate

    The CSO then adjusted this figure of estimated usual residents for 3rd April 2022 back to the 3rd December 2021 reference point by performing a reverse cohort-survival model.

    Firstly, there are an estimated 21,528 births, some 12,405 deaths and approximately 63,595 inward and 25,730 outward migrants for the four-month period December 2021 to March 2022. This affects a total of approximately 123,000 persons, or about 2.4% in a total population of around 5.15 million persons. These population changes were ‘reversed’, as indicated below. Secondly, we also ‘reversed’ those persons who moved from their address within Ireland after December 3rd 2021 to their Census April 3rd 2022 address. Based on the selection method approximately 85,000 persons were moved to their previous address, representing about 1.7% of the population.

    The steps in the process were:

    Births We took the actual November 2015 to April 2016 births from Census 2016 with the variables grid reference, gender and NUTS3 as the sampling frame for the selection of births. Then, using data from table 19 in the Q1 2022 Vital Stats quarterly release (Table VSQ19 on Statbank), we derived the number of Q1 2022 births at NUTS3 by gender level. We also included a proportion of Q4 2021 births, taking one-third to represent December 2021. There are 21,528 births in total for the four-month period we are interested in (16,121 for Q1 2022 plus a third of the value of Q4 2021 which is 5,407), see table 2. Then, using the SAS procedure surveyselect, we selected, at random, the required number of births per strata from the frame and totalled up per grid reference. The resulting figure is the number of people removed from the Census 2021 grid totals, as these figures represent those born during December 2021 to March 2022.

    We took the entire Census 2016 data with the variables grid reference, gender, NUTS3 and broad age group (0-14, 15-29, 30-49, 50-64, 65-84 and 85+) as the sampling frame for the selection of people to add back in who died between December 2020 and March 2022. This stratification results in 96 cells. This frame serves as a proxy for the distribution of deaths across the 1km grid square strata. Next, we obtained the Q4 2021 and Q1 2022 mortality data stratified by gender, NUTS3 and age group, provided by the Vital Stats statistician. The total number is 12,405 deaths for the four-month period of interest (9,535 for Q1 2022 plus one third of the value for Q4 2021 which is 8,626), see tables 3 and 4.

    Then using the SAS procedure surveyselect, we selected, at random, the required number of deaths per strata from the frame and total up per grid reference. The resulting figure is simply the number of people added to the Census 2021 grid figures as summarised at the grid level, as they represent those who died during December 2021 to March 2022.

    Inward and outward migrants

    The processing of the inward and outward migrants essentially follows the same methodology in that we used Census 2016 as a sampling frame for the inclusion of those who emigrated in December 2021 and March 2022 and the exclusion of those who immigrated in the same period.

    We took the Census 2016 with the variables grid reference, gender, NUTS3, broad nationality (Irish, UK, EU14 excl. IE, EU15 to 27 and Rest of the World) and broad age group (0-14, 15-29, 30-49, 50-64, 65-84 and 85+) as the sampling frame for the selection of migrants. Using the Q4 2021 and Q1 2022 migration data, we got the required inward and outward movers. The Population and Migration statistician provided the data at an individual level for our purposes. There are 63,780 inward migrators (53,403 in Q1 2022 and 10,377 taking one-third of the Q4 2021 values) and 25,730 outward migrators (19,779 in Q1 2022 and 5,951 taking one-third of the Q4 2021 values), see tables 5 to 7.

    Then, using SAS procedure surveyselect, we selected, at random, the required number of inward and outward migrants per strata from the frame and sum over grid reference. Given that there will be more inward than outward migrants, the resulting figures will generally be negative i.e., the population will fall.

    Ukrainian refugees There are no official statistics, but it was estimated that there were more than 23,000 Ukrainian refugees present in the State in April 3 2022. It is difficult to know the exact numbers captured by the Census until the full final dataset is available. Ukrainian refugees were to be counted as immigrants and usual residents (UR) on the census form unless an individual classed themselves as a visitor, in which case they were de facto (DF) residents. From the point of view of the procedure being described here, Ukrainians who are classified

  8. World Health Survey 2003 - Zimbabwe

    • dev.ihsn.org
    • catalog.ihsn.org
    • +3more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2019). World Health Survey 2003 - Zimbabwe [Dataset]. https://dev.ihsn.org/nada/catalog/study/ZWE_2003_WHS_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Zimbabwe
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  9. t

    Data from: Data set for the population survey “attitudes towards big data...

    • service.tib.eu
    • radar-service.eu
    • +2more
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Data set for the population survey “attitudes towards big data practices and the institutional framework of privacy and data protection” [Dataset]. https://service.tib.eu/ldmservice/dataset/rdr-doi-10-35097-1151
    Explore at:
    Dataset updated
    Nov 28, 2024
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Abstract: The aim of this study is to gain insights into the attitudes of the population towards big data practices and the factors influencing them. To this end, a nationwide survey (N = 1,331), representative of the population of Germany, addressed the attitudes about selected big data practices exemplified by four scenarios, which may have a direct impact on the personal lifestyle. The scenarios contained price discrimination in retail, credit scoring, differentiations in health insurance, and differentiations in employment. The attitudes about the scenarios were set into relation to demographic characteristics, personal value orientations, knowledge about computers and the internet, and general attitudes about privacy and data protection. Another focus of the study is on the institutional framework of privacy and data protection, because the realization of benefits or risks of big data practices for the population also depends on the knowledge about the rights the institutional framework provided to the population and the actual use of those rights. As results, several challenges for the framework by big data practices were confirmed, in particular for the elements of informed consent with privacy policies, purpose limitation, and the individuals’ rights to request information about the processing of personal data and to have these data corrected or erased. TechnicalRemarks: TYPE OF SURVEY AND METHODS The data set includes responses to a survey conducted by professionally trained interviewers of a social and market research company in the form of computer-aided telephone interviews (CATI) from 2017-02 to 2017-04. The target population was inhabitants of Germany aged 18 years and more, who were randomly selected by using the sampling approaches ADM eASYSAMPLe (based on the Gabler-Häder method) for landline connections and eASYMOBILe for mobile connections. The 1,331 completed questionnaires comprise 44.2 percent mobile and 55.8 percent landline phone respondents. Most questions had options to answer with a 5-point rating scale (Likert-like) anchored with ‘Fully agree’ to ‘Do not agree at all’, or ‘Very uncomfortable’ to ‘Very comfortable’, for instance. Responses by the interviewees were weighted to obtain a representation of the entire German population (variable ‘gewicht’ in the data sets). To this end, standard weighting procedures were applied to reduce differences between the sample and the entire population with regard to known rates of response and non-response depending on household size, age, gender, educational level, and place of residence. RELATED PUBLICATION AND FURTHER DETAILS The questionnaire, analysis and results will be published in the corresponding report (main text in English language, questionnaire in Appendix B in German language of the interviews and English translation). The report will be available as open access publication at KIT Scientific Publishing (https://www.ksp.kit.edu/). Reference: Orwat, Carsten; Schankin, Andrea (2018): Attitudes towards big data practices and the institutional framework of privacy and data protection - A population survey, KIT Scientific Report 7753, Karlsruhe: KIT Scientific Publishing. FILE FORMATS The data set of responses is saved for the repository KITopen at 2018-11 in the following file formats: comma-separated values (.csv), tapulator-separated values (.dat), Excel (.xlx), Excel 2007 or newer (.xlxs), and SPSS Statistics (.sav). The questionnaire is saved in the following file formats: comma-separated values (.csv), Excel (.xlx), Excel 2007 or newer (.xlxs), and Portable Document Format (.pdf). PROJECT AND FUNDING The survey is part of the project Assessing Big Data (ABIDA) (from 2015-03 to 2019-02), which receives funding from the Federal Ministry of Education and Research (BMBF), Germany (grant no. 01IS15016A-F). http://www.abida.de

  10. e

    HSRC Master Sample II - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). HSRC Master Sample II - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/96d7c5e3-e8c8-5eb6-a25b-c22ad9f86fba
    Explore at:
    Dataset updated
    Jul 24, 2025
    Description

    Description: The 2005 HSRC Master Sample was used for SABSSM 2008 and 2012, the SANHANES study in 2012 and SASAS 2007-2010 (adjacent EAs) to obtain an understanding of geographical spread of HIV/AIDS, perceptions and attitudes of people and other health related studies over time. Abstract: A sample can be defined as a subset containing the characteristics of a larger population. Samples are used in statistical testing when population sizes are too large for the test to include all possible members or observations. A sample should represent the whole population and not reflect bias toward a specific attribute.[1] One of the most crucial aspects of sample design in household surveys is its frame. The sampling frame has significant implications on the cost and the quality of any survey, household or otherwise.[2] The sampling frame .... in a household survey must cover the entire target population. When that frame is used for multiple surveys or multiple rounds of the same survey it is known as a master sample frame or .... master sample.[3] A master sample is a sample drawn from a population for use on a number of future occasions, so as to avoid ad hoc sampling on each occasion. Sometimes the master sample is large and subsequent inquiries are based on a sub-sample from it.[4] The HSRC compiles master samples in order to construct samples for various HSRC research studies. The 2005 HSRC Master Sample was used for SABSSM 2008 and 2012, SASAS 2007-2010 and the SANHANES study in 2012 to obtain an understanding of geographical spread of HIV/AIDS, perceptions and attitudes of people and other health related studies over time. The 2005 HSRC Master Sample was created in the following way: South Africa was delineated into EAs according to municipality and province. Municipal boundaries were obtained from the Municipal Demarcation Board. An Enumeration area (EA) is the smallest geographical unit (piece of land) into which the country is divided for census or survey enumeration.[5] The concepts and definitions of terms used for Census 2001 comply in most instances with United Nations standards for censuses. A total of 1,000 census enumeration areas (EAs) from the 2001 population census were randomly selected using probability proportional to size and stratified by province, locality type and race in urban areas from a database of 80 787 EAs that were mapped using aerial photography to develop an HSRC master sample for selecting households. The ideal frame would be complete with respect to the target population if all of its members (the universe) are covered by the frame. Ideal characteristics of a master sample: The master frame should be as complete, accurate and current as practicable. A master sample frame for household surveys is typically developed from the most recent census, just as a regular sample frame is. Because the master frame may be used during an entire intercensal (between census) period, however, it will usually require periodic and regular updating such as every 2-3 years. This is in contrast to a regular frame which is more likely to be up-dated on an ad hoc basis and only when a particular survey is being planned[6] [1] http://www.investopedia.com/terms/s/sample.asp [2] http://unstats.un.org/unsd/demographic/meetings/egm/sampling_1203/docs/no_3.pdf [3] http://unstats.un.org/unsd/demographic/meetings/egm/sampling_1203/docs/no_3.pdf [4] A Dictionary of Statistical Terms, 5th edition, prepared for the International Statistical Institute by F.H.C. Marriott. Published for the International Statistical Institute by Longman Scientific and Technical. http://stats.oecd.org/glossary/detail.asp?ID=3708 [5] http://africageodownloads.info/128_mokgokolo.pdf [6] http://unstats.un.org/unsd/demographic/meetings/egm/sampling_1203/docs/no_3.pdf All enumeration areas (80 787 EAs) within the South African borders during the 2001 Census. The whole country was delimited into EAs according to municipality and province. Municipal boundaries were obtained from the Municipal Demarcation Board. A total of 1,000 census enumeration areas (EAs) from the 2001 population census were randomly selected using probability proportional to size and stratified by province, locality type and race in urban areas from a database of 80 787 EAs that were mapped in all surveys using aerial photography to develop all HSRC master sample for selecting households. The first digit represents the province The second and third digits represent the municipality

  11. Data from: A framework for assessing the habitat correlates of spatially...

    • data.niaid.nih.gov
    • search.dataone.org
    zip
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Stillman; Courtney Davis; Kylee Dunham; Viviana Ruiz-Gutierrez; Amanda Rodewald; Alison Johnston; Tom Auer; Matt Strimas-Mackey; Shawn Ligocki; Daniel Fink (2025). A framework for assessing the habitat correlates of spatially explicit population trends [Dataset]. http://doi.org/10.5061/dryad.8pk0p2nzf
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 19, 2025
    Dataset provided by
    Cornell Lab of Ornithologyhttp://birds.cornell.edu/
    University of St Andrews
    Authors
    Andrew Stillman; Courtney Davis; Kylee Dunham; Viviana Ruiz-Gutierrez; Amanda Rodewald; Alison Johnston; Tom Auer; Matt Strimas-Mackey; Shawn Ligocki; Daniel Fink
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Aim. Halting widespread biodiversity loss will require detailed information on species’ trends and the habitat conditions correlated with population declines. However, constraints on conventional monitoring programs and commonplace approaches for trend estimation can make it difficult to obtain such information across species’ ranges. Here, we demonstrate how recent developments in machine learning and model interpretation, combined with data sources derived from participatory science, enable landscape-scale inferences on the habitat correlates of population trends across broad spatial extents. Location. Worldwide, with a case study in the western United States. Methods. We used interpretable machine learning to understand the relationships between land cover and spatially explicit bird population trends. Using a case study with three passerine birds in the western U.S. and spatially explicit trends derived from eBird data, we explore the potential impacts of simulated land cover modification while evaluating potential co-benefits among species.Results. Our analysis revealed complex, non-linear relationships between land cover variables and species’ population trends as well as substantial interspecific variation in those relationships. Areas with the most positive impacts from a simulated land cover modification overlapped for two species, but these changes had little effect on the third species. Main conclusions. This framework can help conservation practitioners identify important relationships between species trends and habitat while also highlighting areas where potential modifications to the landscape could bring the biggest benefits. The analysis is transferrable to hundreds of species worldwide with spatially explicit trend estimates, allowing inference across multiple species at scales which are tractable for management to combat species declines.

  12. f

    Changes in Final Population Estimates and Personal Network Size between...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Habecker; Kirk Dombrowski; Bilal Khan (2023). Changes in Final Population Estimates and Personal Network Size between Original/MoS and Unweighted/Weighted Proceedures after Recursive Trimming. [Dataset]. http://doi.org/10.1371/journal.pone.0143406.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Patrick Habecker; Kirk Dombrowski; Bilal Khan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Changes in Final Population Estimates and Personal Network Size between Original/MoS and Unweighted/Weighted Proceedures after Recursive Trimming.

  13. National Health Interview Survey

    • data.virginia.gov
    • healthdata.gov
    • +3more
    Updated Jul 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2023). National Health Interview Survey [Dataset]. https://data.virginia.gov/dataset/national-health-interview-survey
    Explore at:
    Dataset updated
    Jul 25, 2023
    Description

    The National Health Interview Survey (NHIS) is the principal source of information on the health of the civilian noninstitutionalized population of the United States and is one of the major data collection programs of the National Center for Health Statistics (NCHS) which is part of the Centers for Disease Control and Prevention (CDC). The National Health Survey Act of 1956 provided for a continuing survey and special studies to secure accurate and current statistical information on the amount, distribution, and effects of illness and disability in the United States and the services rendered for or because of such conditions. The survey referred to in the Act, now called the National Health Interview Survey, was initiated in July 1957. Since 1960, the survey has been conducted by NCHS, which was formed when the National Health Survey and the National Vital Statistics Division were combined.
    NHIS data are used widely throughout the Department of Health and Human Services (DHHS) to monitor trends in illness and disability and to track progress toward achieving national health objectives. The data are also used by the public health research community for epidemiologic and policy analysis of such timely issues as characterizing those with various health problems, determining barriers to accessing and using appropriate health care, and evaluating Federal health programs.
    The NHIS also has a central role in the ongoing integration of household surveys in DHHS. The designs of two major DHHS national household surveys have been or are linked to the NHIS. The National Survey of Family Growth used the NHIS sampling frame in its first five cycles and the Medical Expenditure Panel Survey currently uses half of the NHIS sampling frame. Other linkage includes linking NHIS data to death certificates in the National Death Index (NDI).
    While the NHIS has been conducted continuously since 1957, the content of the survey has been updated about every 10-15 years. In 1996, a substantially revised NHIS questionnaire began field testing. This revised questionnaire, described in detail below, was implemented in 1997 and has improved the ability of the NHIS to provide important health information.

  14. Vulnerability Assessment Framework Population Survey for Refugees in Host...

    • microdata.unhcr.org
    • datacatalog.ihsn.org
    • +1more
    Updated Nov 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Hall (2022). Vulnerability Assessment Framework Population Survey for Refugees in Host Communities, 2022 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/793
    Explore at:
    Dataset updated
    Nov 17, 2022
    Dataset provided by
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Samuel Hall
    Time period covered
    2021
    Area covered
    Jordan
    Description

    Abstract

    The Vulnerability Assessment Framework (VAF) is a key tool used by humanitarian and development organizations in Jordan. It contributes to coherent vulnerability identification and programme delivery across sectors. It was designed in 2014 with a focus on Syrian refugees residing outside of camps. For the fifth bi-annual VAF population study in 2022, 6,427 refugee households residing in host communities were randomly sampled across all governorates to explore thematic and sectoral vulnerabilities for refugee populations of all nationalities within Jordan. This data was collected in person between July 2021 and October 2021.

    Geographic coverage

    Whole country host communities (excluding camps).

    Analysis unit

    Household, Case (family), Individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The stratified sampling strategy was developed jointly with the World Bank and designed to generate the most precise statistics possible and at the lowest possible cost and to allow for representativeness at a margin of error below 5%. Stratification was planned along two variables: nationality (Syrian, Iraqi and Other) and location. Syrians were represented across the twelve governorates, while non-Syrians were represented across the regions of Jordan; Amman, Central/outside Amman (consisting of Balqa, Madaba and Zarqa), North (consisting of Ajloun, Irbid, Jerash, Mafraq) and South (consisting of Aqaba, Karak, Tafilah, Ma'an). The sample was randomly drawn from cases registered in the ProGres registration database administered by UNHCR Jordan. The sample includes refugees residing in urban, peri-urban and rural settings and excludes those living in refugee camps.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaire contained the following sections: Household Demographics, Shelter, WASH, Consumption and Expenditure6, COVID-19 KAP7, Financial Situation, Health, Education, Livelihoods, and Child Labour.

  15. Survey Directed to the Venezuelan Population Residing in Peru - 2018 - Peru

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Dec 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Instituto Nacional de Estadística e Informática (2022). Survey Directed to the Venezuelan Population Residing in Peru - 2018 - Peru [Dataset]. https://microdata.worldbank.org/index.php/catalog/5202
    Explore at:
    Dataset updated
    Dec 2, 2022
    Dataset authored and provided by
    Instituto Nacional de Estadística e Informáticahttps://www.gob.pe/inei/
    Time period covered
    2018
    Area covered
    Peru
    Description

    Abstract

    The Instituto Nacional de Estadística e Informática (INEI) in Peru carried out the Encuesta Dirigida a la Población Venezolana que Reside en el País (ENPOVE) survey between the months of November and December 2018 in order to gain a better understanding of the Venezuelan population residing in Peru.

    The survey was carried out in the capital cities in the departments of Tumbes, La Libertad, Lima-Callao, Arequipa and Cusco, which together are home to 85% of the Venezuelan population in the country. The purpose of the survey was to provide reliable data on the living conditions of the Venezuelan population residing in Peru, including: demographic and social aspects, immigration status, discrimination, violence, health, employment, education, access to basic services, housing and home equipment.

    The information can be used by international organizations, researchers, and public policy makers to formulate actions, policies, plans, programs, and projects to meet the most urgent needs of this group. The World Bank, UNHCR, IOM, UNFPA and UNICEF provided technical and financial support to the survey.

    Geographic coverage

    Urban area of capital cities of the regions of Tumbes, La Libertad, Arequipa, Cusco, Lima and Callao.

    Analysis unit

    Household and individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling is probabilistic and stratified. The sampling consists of two stages, the primary sampling unit being the block, which is defined as the urban geographic area delimited by roads. The secondary sampling unit is the dwelling with at least one Venezuelan person that exists within a block. For the households that are finally selected, information is obtained from all the individuals.

    The sampling frame for the blocks was constructed as follows: i) The addresses of 58,067 Venezuelan people registered in the 2017 Population and Housing Census were identified. ii) The addresses of 10,076 people were available registered in the registry of Venezuelans who applied for the Temporary Permit of Permanence from the National Superintendency of Migration of the Ministry of the Interior. iii) The blocks containing the addresses of the aforementioned information sources were identified using the Geographic Information System. A global framework of 19,074 blocks was built.

    The concept of block used in the survey is a physical area delimited by streets, avenues, roads, canals, etc. easily identifiable and can contain one or more homes, parks, vacant lots, sports fields, etc.

    The original design of the sample included the construction of three strata based on the number of dwellings with a Venezuelan population found in each block of the sampling frame: 1 to 5, 6 to 10, greater than 10. On the other hand, the population of the city of Lima was divided into 4 zones with the following districts:

    North Lima: Los Olivos, San Martn De Porres, Comas, Carabayllo, Independencia, Puente Piedra East Lima: San Juan De Lurigancho, Ate, Santa Anita, El Agustino, San Luis, La Molina, Lurigancho Downtown Lima: La Victoria, Lima, Santiago De Surco, Surquillo, San Miguel, Brea, Barranco, Rmac, Lince Jesus Maria, Magdalena Del Mar, San Borja South Lima: Chorrillos, San Juan De Miraflores, Villa El Salvador, Villa Mara Del Triunfo, Lurn, Pachacamac

    The housing framework was built by means of an exhaustive registry of buildings and dwellings in each of the selected blocks, identifying those places, be they dwellings or establishments, that had a population from Venezuela. The concept of housing for the purposes of the survey included private and collective dwellings (hotels, hostels, lodgings, churches and shelters), where the Venezuelan population is found. This concept is different from the one used in the regular INEI household surveys, which only considers private households with a maximum of 5 households. The concept of the household used was: People, whether or not they are related, who share the main meals and attend to their vital needs in common. This concept is different from that used in the INEI household surveys, where the budget is considered.

    Mode of data collection

    Face-to-face [f2f]

  16. T

    Spain - Share of total population living in a dwelling with a leaking roof,...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Spain - Share of total population living in a dwelling with a leaking roof, damp walls, floors or foundation, or rot in window frames of floor [Dataset]. https://tradingeconomics.com/spain/share-of-total-population-living-in-a-dwelling-with-a-leaking-roof-damp-walls-floors-or-foundation-or-rot-in-window-frames-of-floor-eurostat-data.html
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Jul 27, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Spain
    Description

    Spain - Share of total population living in a dwelling with a leaking roof, damp walls, floors or foundation, or rot in window frames of floor was 23.00% in December of 2023, according to the EUROSTAT. Trading Economics provides the current actual value, an historical data chart and related indicators for Spain - Share of total population living in a dwelling with a leaking roof, damp walls, floors or foundation, or rot in window frames of floor - last updated from the EUROSTAT on July of 2025. Historically, Spain - Share of total population living in a dwelling with a leaking roof, damp walls, floors or foundation, or rot in window frames of floor reached a record high of 23.00% in December of 2023 and a record low of 11.50% in December of 2017.

  17. i

    Estimating the Size of Populations through a Household Survey 2011 - Rwanda

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 10, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rwanda Biomedical Center/ Institute of HIV/AIDS, Disease Prevention and Control Department (RBC/IHDPC) (2017). Estimating the Size of Populations through a Household Survey 2011 - Rwanda [Dataset]. https://datacatalog.ihsn.org/catalog/7192
    Explore at:
    Dataset updated
    Oct 10, 2017
    Dataset authored and provided by
    Rwanda Biomedical Center/ Institute of HIV/AIDS, Disease Prevention and Control Department (RBC/IHDPC)
    Time period covered
    2011
    Area covered
    Rwanda
    Description

    Abstract

    The Estimating the Size of Populations through a Household Survey (EPSHS), sought to assess the feasibility of the network scale-up and proxy respondent methods for estimating the sizes of key populations at higher risk of HIV infection and to compare the results to other estimates of the population sizes. The study was undertaken based on the assumption that if these methods proved to be feasible with a reasonable amount of data collection for making adjustments, countries would be able to add this module to their standard household survey to produce size estimates for their key populations at higher risk of HIV infection. This would facilitate better programmatic responses for prevention and caring for people living with HIV and would improve the understanding of how HIV is being transmitted in the country.

    The specific objectives of the ESPHS were: 1. To assess the feasibility of the network scale-up method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 2. To assess the feasibility of the proxy respondent method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 3. To estimate the population size of MSM, FSW, IDU, and clients of sex workers in Rwanda at a national level; 4. To compare the estimates of the sizes of key populations at higher risk for HIV produced by the network scale-up and proxy respondent methods with estimates produced using other methods; and 5. To collect data to be used in scientific publications comparing the use of the network scale-up method in different national and cultural environments.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Individual

    Sampling procedure

    The Estimating the Size of Populations through a Household Survey (ESPHS) used a two-stage sample design, implemented in a representative sample of 2,125 households selected nationwide in which all women and men age 15 years and above where eligible for an individual interview. The sampling frame used was the preparatory frame for the Rwanda Population and Housing Census (RPHC), which was conducted in 2012; it was provided by the National Institute of Statistics of Rwanda (NISR).

    The sampling frame was a complete list of natural villages covering the whole country (14,837 villages). Two strata were defined: the city of Kigali and the rest of the country. One hundred and thirty Primary Sampling Units (PSU) were selected from the sampling frame (35 in Kigali and 95 in the other stratum). To reduce clustering effect, only 20 households were selected per cluster in Kigali and 15 in the other clusters. As a result, 33 percent of the households in the sample were located in Kigali.

    The list of households in each cluster was updated upon arrival of the survey team in the cluster. Once the listing had been updated, a number was assigned to each existing household in the cluster. The supervisor then identified the households to be interviewed in the survey by using a table in which the households were randomly pre-selected. This table also provided the list of households pre-selected for each of the two different definitions of what it means "to know" someone.

    For further details on sample design and implementation, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Estimating the Size of Populations through a Household Survey (ESPHS) used two types of questionnaires: a household questionnaire and an individual questionnaire. The same individual questionnaire was used to interview both women and men. In addition, two versions of the individual questionnaire were developed, using two different definitions of what it means “to know” someone. Each version of the individual questionnaire was used in half of the selected households.

    Cleaning operations

    The processing of the ESPHS data began shortly after the fieldwork commenced. Completed questionnaires were returned periodically from the field to the SPH office in Kigali, where they were entered and checked for consistency by data processing personnel who were specially trained for this task. Data were entered using CSPro, a programme specially developed for use in DHS surveys. All data were entered twice (100 percent verification). The concurrent processing of the data was a distinct advantage for data quality, because the School of Public Health had the opportunity to advise field teams of problems detected during data entry. The data entry and editing phase of the survey was completed in late August 2011.

    Response rate

    A total of 2,125 households were selected in the sample, of which 2,120 were actually occupied at the time of the interview. The number of occupied households successfully interviewed was 2,102, yielding a household response rate of 99 percent.

    From the households interviewed, 2,629 women were found to be eligible and 2,567 were interviewed, giving a response rate of 98 percent. Interviews with men covered 2,102 of the eligible 2,149 men, yielding a response rate of 98 percent. The response rates do not significantly vary by type of questionnaire or residence.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made to minimize this type of error during the implementation of the Rwanda ESPHS 2011, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ESPHS 2011 is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the ESPHS 2011 sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the ESPHS 2011 is a SAS program. This program uses the Taylor linearization method for variance estimation for survey estimates that are means or proportions.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey report.

  18. T

    France - Population living in a dwelling with a leaking roof, damp walls,...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 10, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). France - Population living in a dwelling with a leaking roof, damp walls, floors or foundation or rot in window frames of floor [Dataset]. https://tradingeconomics.com/france/population-living-in-a-dwelling-with-a-leaking-roof-damp-walls-floors-or-foundation-or-rot-in-window-frames-of-floor-eurostat-data.html
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jun 10, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    France
    Description

    France - Population living in a dwelling with a leaking roof, damp walls, floors or foundation or rot in window frames of floor was 18.00% in December of 2020, according to the EUROSTAT. Trading Economics provides the current actual value, an historical data chart and related indicators for France - Population living in a dwelling with a leaking roof, damp walls, floors or foundation or rot in window frames of floor - last updated from the EUROSTAT on July of 2025. Historically, France - Population living in a dwelling with a leaking roof, damp walls, floors or foundation or rot in window frames of floor reached a record high of 18.00% in December of 2020 and a record low of 10.90% in December of 2011.

  19. Living Standards Measurement Survey 2007 - Serbia

    • microdata.fao.org
    Updated Nov 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistical Office of the Republic of Serbia (2022). Living Standards Measurement Survey 2007 - Serbia [Dataset]. https://microdata.fao.org/index.php/catalog/1430
    Explore at:
    Dataset updated
    Nov 8, 2022
    Dataset authored and provided by
    Statistical Office of the Republic of Serbiahttp://www.stat.gov.rs/
    Time period covered
    2007
    Area covered
    Serbia
    Description

    Abstract

    This study aims to help address the issue of the appropriate use of statistical data in policy development in Serbia. Faced with enterprise restructuring, high unemployment and high levels of social exclusion, as well as the consequences of internal population displacement, the Government of Serbia (GoS) has recognized and acknowledged the need for fundamental reforms in social policy area and the collection of adequate data of social statistics. Reliable household data are scarce in Serbia, with the result that social policy making is put on a precarious basis. The exceptional circumstances of Serbia have left a legacy of immense complexity, in which social groups have become fractured and excluded. A statistically reliable basis for policy making, particularly in the social sphere, is a priority. Data on poverty and living standards are seen as a part of information system to support decision making by the GoS and its line Ministries. The public is also keenly interested in poverty data. Therefore poverty data are also crucially important for strategic planning bodies within GoS, and for donors in assessing their strategies in support of the Poverty Reduction Strategy (PRS).

    Geographic coverage

    National

    Analysis unit

    Households

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The population for LSMS consists of Republic of Serbia residents, excluding Kosovo and Metohija . The sampling frame for the LSMS was based on the Enumeration District (ED) delineated for the 2002 Serbia Census, excluding those with less than 20 households. It is estimated that the households in the excluded EDs only represent about 1 percent of the population of Serbia. The sampling frame also excludes the population living in group quarters, institutions and temporary housing units, as well as the homeless population: these groups also represent less than 1 percent of the population, so the sampling frame should cover at least 98 percent of the Serbian population. Stratification was done in the same way as for the previous LSMSs. Enumeration District were stratified according to: (1) Region in 6 strata (Vojvodina, Belgrade, West Serbia, Sumadija and Pomoravlj e, East Serbia and South East Serbia) (2) Type of settlement (urban and other)

    The allocation of EDs according to region and type of settlement was propoI1ionai to the number of occupied dwellings, adjusted to provide sufficient precision of estimates at the regional level. To provide optimal sample sizes in each region we decided that the minimum number of allocated EDs to each stratum should be 60. The result of this procedure was a slight deviation from strictly proportional allocation. The sample size for LSMS 2007 was 71 40 households from 510 selected EDs. Within each ED 14 occupied dwellings were selected. From each selected occupied dwelling one household was selected (using a Kish Grid). The sample size was determined according with the aim of achieving 5,000 household interviews with an expected non-response rate of around 30%. The final response rate was 78%, producing a sample size of 5,557 households.

    Sampling deviation

    The overall estimated total number of households from the 2007 LSMS based on the final weights is about 10 percent lower than the corresponding figure from the 2002 Census frame. The difference is larger for the rural strata (12.1 percent) than the urban strata (8.7 percent). These differences probably include an actual decline in the number of households in some strata and may also reflect the quality of the updating of the listing of occupied dwelling units in sample EDs.

    Mode of data collection

    Face-to-face [f2f]

    Response rate

    Response rate was 78 percent

  20. Effects of social organization, trap arrangement and density, sampling...

    • plos.figshare.com
    application/cdfv2
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manan Gupta; Amitabh Joshi; T. N. C. Vidya (2023). Effects of social organization, trap arrangement and density, sampling scale, and population density on bias in population size estimation using some common mark-recapture estimators [Dataset]. http://doi.org/10.1371/journal.pone.0173609
    Explore at:
    application/cdfv2Available download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Manan Gupta; Amitabh Joshi; T. N. C. Vidya
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
World Health Organization (WHO) (2013). World Health Survey 2003 - Belgium [Dataset]. https://apps.who.int/healthinfo/systems/surveydata/index.php/catalog/118
Organization logo

World Health Survey 2003 - Belgium

Explore at:
Dataset updated
Jun 19, 2013
Dataset provided by
World Health Organizationhttps://who.int/
Authors
World Health Organization (WHO)
Time period covered
2003
Area covered
Belgium
Description

Abstract

Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

Geographic coverage

The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

Analysis unit

Households and individuals

Universe

The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

Kind of data

Sample survey data [ssd]

Sampling procedure

SAMPLING GUIDELINES FOR WHS

Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

STRATIFICATION

Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

MULTI-STAGE CLUSTER SELECTION

A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

Search
Clear search
Close search
Google apps
Main menu