This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.
The world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots—Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)—that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.
In 2023, the natural growth rate of the population across China varied between 7.96 people per 1,000 inhabitants (per mille) in Tibet and -6.92 per mille in Heilongjiang province. The national total population growth rate turned negative in 2022 and ranged at -1.48 per mille in 2023. Regional disparities in population growth The natural growth rate is the difference between the birth rate and the death rate of a certain region. In China, natural population growth reached the highest values in the western regions of the country. These areas have a younger population and higher fertility rates. Although the natural growth rate does not include the direct effects of migration, migrants are often young people in their reproductive years, and their movement may therefore indirectly affect the birth rates of their home and host region. This is one of the reasons why Guangdong province, which received a lot of immigrants over the last decades, has a comparatively high population growth rate. At the same time, Jilin, Liaoning, and Heilongjiang province, all located in northeast China, suffer not only from low fertility, but also from emigration of young people searching for better jobs elsewhere. The impact of uneven population growth The current distribution of natural population growth rates across China is most likely to remain in the near future, while overall population decline is expected to accelerate. Regions with less favorable economic opportunities will lose their inhabitants faster. The western regions with their high fertility rates, however, have only small total populations, which limits their effect on China’s overall population size.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Adult individuals that do not breed in a given year occur in a wide range of natural populations. However, such nonbreeders are often ignored in theoretical and empirical population studies, limiting our knowledge of how nonbreeders affect realized and estimated population dynamics and potentially impeding projection of deterministic and stochastic population growth rates. We present and analyse a general modelling framework for systems where breeders and nonbreeders differ in key demographic rates, incorporating different forms of nonbreeding, different life histories and frequency-dependent effects of nonbreeders on demographic rates of breeders. Comparisons of estimates of deterministic population growth rate, λ, and demographic variance, math formula, from models with and without distinct nonbreeder classes show that models that do not explicitly incorporate nonbreeders give upwardly biased estimates of math formula, particularly when the equilibrium ratio of nonbreeders to breeders, math formula, is high. Estimates of λ from empirical observations of breeders only are substantially inflated when individuals frequently re-enter the breeding population after periods of nonbreeding. Sensitivity analyses of diverse parameterizations of our model framework, with and without negative frequency-dependent effects of nonbreeders on breeder demographic rates, show how changes in demographic rates of breeders vs. nonbreeders differentially affect λ. In particular, λ is most sensitive to nonbreeder parameters in long-lived species, when math formula, and when individuals are unlikely to breed at several consecutive time steps. Our results demonstrate that failing to account for nonbreeders in population studies can obscure low population growth rates that should cause management concern. Quantifying the size and demography of the nonbreeding section of populations and modelling appropriate demographic structuring is therefore essential to evaluate nonbreeders' influence on deterministic and stochastic population dynamics.
DataScriptsResultsThis file contains the data and R scripts to: 1. fit vital rate models, 2. build population projection models, and 3. run stochastic simulations. The 'Results' directory also reports the results of vital rate models and simulations. Readme and metadata files are provided within the main, and 'Data' folders, respectively.
Population growth rates will respond to an environmental driver only if the driver impacts demographic rate(s) and the population is sensitive to impacted demographic rate(s). If populations vary in the sensitivity of population growth rate to demographic rates, the effect of an environmental driver on population growth rate could vary across populations, even if the effect of the driver on demographic rates does not vary across populations. Here, we use five years of demographic data of a common alpine plant, including data from a neighbor removal experiment and a climate warming experiment, to quantify the relative contribution of neighbor effects on demographic rates vs. sensitivity of population growth rate to demographic rates to across-population variation in neighbor effects on population growth rate. We find neighbor effects on population growth rate vary significantly across populations, and this effect is driven primarily by variation in sensitivity of population growth rate t...
Before the activity, students are divided into 3 groups that are assigned 3 different reading assignments (land use, atmosphere, or water quality). On the day of the activity, students work collaboratively with students from the same reading assignment group for 20 – 40 minutes to answer questions and address concepts from their particular assigned reading. Next, students are shuffled (jigsaw-style) into small teams of 3 students (one student from each reading group). Students educate each other with concepts from their respective reading groups and then work collaboratively on a shared project to select, define, and potentially solve an environmental challenge.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Existing studies show how population growth and rising incomes will cause a massive increase in the future global demand for food. We add to the literature by estimating the potential effect of increases in human weight, caused by rising BMI and height, on future calorie requirements. Instead of using a market based approach, the estimations are solely based on human energy requirements for maintenance of weight. We develop four different scenarios to show the effect of increases in human height and BMI. In a world where the weight per age-sex group would stay stable, we project calorie requirements to increases by 61.05 percent between 2010 and 2100. Increases in BMI and height could add another 18.73 percentage points to this. This additional increase amounts to more than the combined calorie requirements of India and Nigeria in 2010. These increases would particularly affect Sub-Saharan African countries, which will already face massively rising calorie requirements due to the high population growth. The stark regional differences call for policies that increase food access in currently economically weak regions. Such policies should shift consumption away from energy dense foods that promote overweight and obesity, to avoid the direct burden associated with these conditions and reduce the increases in required calories. Supplying insufficient calories would not solve the problem but cause malnutrition in populations with weak access to food. As malnutrition is not reducing but promoting rises in BMI levels, this might even aggravate the situation.
Human: areas where population growth (>100hab/km2) is exacerbating climate change impacts - baseline (1981-2010)
The English structural transformation from farming to manufacturing was accompanied by rapid technological change, expansion of trade, and massive population growth. While the roles of technology and trade in this process have been investigated, the literature has largely ignored the role of population growth. We examine population size effects on various aspects of structural development, characterizing their explicit dependence on preference-side and production-side characteristics of the economy, and trade. Our quantitative analysis of the English transformation assigns a major role to population growth, with especially notable contributions to post-1750 rise in the manufacturing employment share and the relative price dynamics.
The statistic shows the natural rate of population growth by continent in the middle of 2014. The natural rate of population growth in Africa was 2.5 percent in the middle of 2014.The natural rate of population growth arises from the birth rate minus the death rate and without including the effects of migration.Population growthAs shown in the statistic above, the natural rate of population growth continues to increase on almost every continent in 2013.Due to medical advances, better living conditions and the increase of agricultural productivity the world population is continuously rising. The development of the world population from 1950 to 2030 is estimated to be tripled according to United Nations’ data.The majority of the world population lives in Asia, but the population in Africa is forecasted to rise from 1,031 in year 2010 up to 4,185 in year 2100. This forecast is based on the rapid growth of the developing countries, such as Africa. Developing countries are well known for its urban residents living in slum conditions. A slum is defined as a thickly populated, metropolitan area with bad living conditions and people living below the poverty line.The urban population in developing countries, who lived in slums has increased steadily for the last decades. In 1990, around 656.7 million people were living in slums in developing countries, while this number rose to 827.7 million people living in slums of developing countries in 2010.The number of people living in slums worldwide is estimated to grow from 1,145,984 in year 2010 to 1,477,291 in year 2020 by the UN-HABITAT. In some countries the population living in slums grows faster than in others, naturally. The percentage of urban slum dwellers in Morocco for example nearly doubled from 13 percent to 24 percent between 2000 and 2010, while the same rate in Turkey only grew moderately from 13 to 18 percent.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
When comparing somatic growth thermal performance curves (TPCs), higher somatic growth across experimental temperatures is often observed for populations originating from colder environments. Such countergradient variation has been suggested to represent adaptation to seasonality, or shorter favorable seasons in colder climates. Alternatively, populations from cold climates may outgrow those from warmer climates at low temperature, and vice versa at high temperature, representing adaptation to temperature. Using modelling, we show that distinguishing between these two types of adaptation based on TPCs requires knowledge about (i) the relationship between somatic growth rate and population growth rate, which in turn depends on the scale of somatic growth (absolute or proportional), and (ii) the relationship between somatic growth rate and mortality rate in the wild. We illustrate this by quantifying somatic growth rate TPCs for three populations of Daphnia magna where population growth scales linearly with proportional somatic growth. For absolute somatic growth, the northern population outperformed the two more southern populations across temperatures, and more so at higher temperatures, consistent with adaptation to seasonality. In contrast, for the proportional somatic growth TPCs, and hence population growth rate, TPCs tended to converge towards the highest temperatures. Thus, if the northern population pays an ecological mortality cost of rapid growth in the wild, this may create crossing population growth TPCs consistent with adaptation to temperature. Future studies within this field should be more explicit in how they extrapolate from somatic growth in the lab to fitness in the wild. Methods D. magna ephippia were obtained from three populations: a pond in Værøy, Norway (67.687°N 12.672°E), a pond in Park Midden-Limburg, Zonhoven, Belgium (50.982°N 5.318°E), and a rice field which is flooded and dries out annually in the Delta del Ebro, Riet Vell, Spain (40.659°N 0.775°E). In the following, these three populations are referred to as the Norway, Belgium and Spain populations, respectively. We used 10 clones (originating from 10 different ephippia) from each population in the experiments, and these were reared at 17°C with a 16L:8D photoperiod for three to four parthenogenetic generations prior to the experiment. During this period, individuals were fed three times a week with Shellfish Diet 1800 (Reed Mariculture Inc, USA) at final concentration of algae 4 × 105 cells/ml, and the ADaM medium was changed once a week. For the experiment, second or later clutch neonates were collected and photographed less than 24 hours after birth. After photographing, neonates were placed individually in 50 ml tubes containing 17°C ADaM medium. Each tube was placed in a Memmert Peltier-cooled incubator IPP 260plus (Memmert, Germany). We used a 16L:8D photoperiod and the temperature in different cabinets was set to 12.0, 15.0, 17.0, 19.0, 22.0, 24.0 and 26.0 °C. Each temperature treatment received eight individuals from each of the 10 clones. Animals were fed every second day with concentrations that had previously been established to represent ad lib rations. Due to logistic constraints, the different temperature treatments were run simultaneously for one population at a time (Norway May-June 2015, Spain December-February 2018, Belgium July-September 2018). All individuals were checked daily for mortality and sexual maturity (presence of eggs in the brood chamber). Tubes were rotated daily within the climate cabinets during the maturity checks to avoid positional effects. Upon maturation individuals were photographed and terminated.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Natural and anthropogenic disturbances co-occur in most systems, but how they interact to shape demographic outcomes remains poorly understood. Such interactions may alter dynamics of populations in non-additive ways, making demographic predictions challenging when focusing on only one disturbance. Thus, understanding the interactive effects of such disturbances is critically important to determine the population viability of most species under a diversity of stressors. We used a hierarchical integral projection model (IPM), parameterized with 13 years of field data across 20 populations, encompassing 2435 individuals of an endangered herb, Liatris ohlingerae. We examined interactive effects of vertebrate herbivory, fire and anthropogenic activities (sand roads) on vital rates (e.g. survival, growth, reproduction, recruitment) and ultimately on population growth rates (λ), to test the hypothesis that interactions amplify or dampen differences in λ depending on environmental contexts. We constructed megamatrices to determine coupled dynamics in individuals damaged vs. not damaged by herbivores in roadsides and in Florida scrub with different times since fire. We identified strong interactive effects of fire with herbivory and habitat with herbivory on vital rates and on population growth rates in the IPM model. We also found different patterns of variation in λ between habitat and time-since-fire scenarios; population growth rates were higher in roadside populations compared to scrub populations and declined with increasing time since fire. Herbivory had interactive effects with both fire and human disturbances on λ. Herbivory resulted in decreased differences in λ due to anthropogenic disturbance and slightly increased differences in λ due to time since fire. Synthesis. The co-occurrence of various disturbances may both amplify and dampen the effects of other disturbances on population growth rate, thus shaping complex population dynamics that are neither linear nor additive. These realistic nonlinearities represent challenges in understanding and projecting of population dynamics. Here, we examined the effects of various sources of disturbance on the population dynamics of an endangered plant species, finding complex interactions affecting population growth rates. We argue that integration of multiple, interacting stressors in IPMs will allow more accurate estimation of the overall effects of ecological processes on species viability.
Heat waves are transient environmental events but can have lasting impacts on populations through lethal and sub-lethal effects on demographic vital rates. Sub-lethal temperature stress affects individual energy balance, potentially affecting individual fitness and population growth. Environmental temperature can, however, have distinct effects on different life-history traits, and the net effect of short-term temperature stress on population growth may lead to different population responses over different time frames. Furthermore, sublethal temperature responses may be density dependent, leading to potentially complicated feedbacks between heat stress and demographic responses over time. Here, we test the hypotheses that: (i) populations subjected to higher heat wave temperatures and longer heat wave durations are more negatively affected than those subjected to less intense and shorter heat waves, (ii) heat wave effects are more pronounced during density-dependent population growth ph...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The future population trajectory, as well as climate change, are aspects that generate uncertainties as to their probable effects on the economy, especially on agricultural production and food industry. This paper simulates the effects of population scenarios and one of climate change using the GTAP computable general equilibrium model. A version of GTAP 10 was created to identify Agriculture, Forestry and Food Industry activities, and eight regions, called Agricultural Economic Blocks, using multivariate analysis techniques. The dynamic simulations of the accumulated deviation between thebaseline and the policy scenarios up to 2050 in isolation indicated widespread negative effects of climate change on the GDP and economic activities of the blocs. The results of the population scenarios indicated that the blocks made up of richer countries and with more diversified economies would tend to win at the expense of the others in terms of GDP. On the other hand, they would generally encourage the blocks’ Agriculture, Forestry and Food Industry productions. Taken together, the negative effects of climate change would tend to outweigh the positive effects of population scenarios and more intensively on those which project less population growth.
Datasets archived here consist of all data analyzed in Duan et al. 2015 from Journal of Applied Ecology. Specifically, these data were collected from annual sampling of emerald ash borer (Agrilus planipennis) immature stages and associated parasitoids on infested ash trees (Fraxinus) in Southern Michigan, where three introduced biological control agents had been released between 2007 - 2010. Detailed data collection procedures can be found in Duan et al. 2012, 2013, and 2015. Resources in this dataset:Resource Title: Duan J Data on EAB larval density-bird predation and unknown factor from Journal of Applied Ecology. File Name: Duan J Data on EAB larval density-bird predation and unknown factor from Journal of Applied Ecology.xlsxResource Description: This data set is used to calculate mean EAB density (per m2 of ash phloem area), bird predation rate and mortality rate caused by unknown factors and analyzed with JMP (10.2) scripts for mixed effect linear models in Duan et al. 2015 (Journal of Applied Ecology).Resource Title: DUAN J Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology. File Name: DUAN J Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology.xlsxResource Description: This data set is used to construct life tables and calculation of net population growth rate of emerald ash borer for each site. The net population growth rates were then analyzed with JMP (10.2) scripts for mixed effect linear models in Duan et al. 2015 (Journal of Applied Ecology).Resource Title: DUAN J Data on EAB Life Tables Calculation from Journal of Applied Ecology. File Name: DUAN J Data on EAB Life Tables Calculation from Journal of Applied Ecology.xlsxResource Description: This data set is used to calculate parasitism rate of EAB larvae for each tree and then analyzed with JMP (10.2) scripts for mixed effect linear models on in Duan et al. 2015 (Journal of Applied Ecology).Resource Title: READ ME for Emerald Ash Borer Biocontrol Study from Journal of Applied Ecology. File Name: READ_ME_for_Emerald_Ash_Borer_Biocontrol_Study_from_Journal_of_Applied_Ecology.docxResource Description: Additional information and definitions for the variables/content in the three Emerald Ash Borer Biocontrol Study tables: Data on EAB Life Tables Calculation Data on EAB larval density-bird predation and unknown factor Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology Resource Title: Data Dictionary for Emerald Ash Borer Biocontrol Study from Journal of Applied Ecology. File Name: AshBorerAnd Parasitoids_DataDictionary.csvResource Description: CSV data dictionary for the variables/content in the three Emerald Ash Borer Biocontrol Study tables: Data on EAB Life Tables Calculation Data on EAB larval density-bird predation and unknown factor Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology Fore more information see the related READ ME file.
Demographic data was collected in two census years 2009 and 2016. During both censuses, girth at breast height or collar girth was measured for each individual. Girth was converted to diameter for analysis. This file contains information of plant sizes (diameter), survival, transition of tree to sprout and presence of harvesting for individuals of Acacia chundra, Chloroxylon swietenia and Gardenia gummifera.
Whereas the population is expected to decrease somewhat until 2100 in Asia, Europe, and South America, it is predicted to grow significantly in Africa. While there were 1.55 billion inhabitants on the continent at the beginning of 2025, the number of inhabitants is expected to reach 3.81 billion by 2100. In total, the global population is expected to reach nearly 10.18 billion by 2100. Worldwide population In the United States, the total population is expected to steadily increase over the next couple of years. In 2024, Asia held over half of the global population and is expected to have the highest number of people living in urban areas in 2050. Asia is home to the two most populous countries, India and China, both with a population of over one billion people. However, the small country of Monaco had the highest population density worldwide in 2024. Effects of overpopulation Alongside the growing worldwide population, there are negative effects of overpopulation. The increasing population puts a higher pressure on existing resources and contributes to pollution. As the population grows, the demand for food grows, which requires more water, which in turn takes away from the freshwater available. Concurrently, food needs to be transported through different mechanisms, which contributes to air pollution. Not every resource is renewable, meaning the world is using up limited resources that will eventually run out. Furthermore, more species will become extinct which harms the ecosystem and food chain. Overpopulation was considered to be one of the most important environmental issues worldwide in 2020.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Background: Rapid population growth and its impact on the environment is a major problem facing the world today, in addition to other issues that also require serious handling and attention. Rapid population growth, especially in cities and urban areas, puts pressure on the fulfillment of population needs that must be provided to ensure the survival of the population. Population growth has an impact on the increasing needs of the population for affordable housing, food needs, transportation. Method: This research uses a qualitative approach based on case studies and literature reviews. This approach involves a critical and in-depth evaluation of previous research, focusing on data collected from various sources related to the impact of population growth on affordable housing, food needs, and sustainable transportation. Findings: The rate of population growth has an impact on environmental sustainability, as a result of the exploitation of natural resources to fulfill various needs, including food needs. Population growth has a linear effect on the demand for food, such as rice and tubers, through the provision of agricultural land. This increase in consumption value occurs in an increasingly limited stock of natural resources, therefore a food fulfillment strategy is needed to achieve national food security and sovereignty, to meet the needs of the population and for food stocks to anticipate undesirable things, such as natural disasters and crop failures. Some of the efforts that can be made are food diversification, intensification, and extensification of agriculture accompanied by the active role of the government in providing infrastructure and supporting policies. Population growth also affects the level of population mobility. Each individual carries out daily activities such as school, work and other activities. This population mobility greatly affects the use of transportation modes to reach certain destinations. The mode of transportation consists of private vehicles and public vehicles. Conclusion: If the use of private vehicles is more than public vehicles, there is the potential for traffic congestion. In addition, the more vehicles used, the greater the carbon emissions produced so that it can cause greenhouse gas effects. One of the efforts that can be made is to implement sustainable transportation management through Transit Oriented Development (TOD) in the provision of transportation modes. TOD is expected to make private vehicle users switch to using public transportation. Novelty/Originality of this study: This research proposes a holistic approach to address the impacts of urban population growth, combining strategies for food diversification, transit-based development, and affordable housing. This framework is expected to be a practical innovation for sustainable urban development in countries with rapid population growth.
This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.