Important Note: This item is in mature support as of June 2023 and will be retired in December 2025. This map shows the estimated annual growth rate of population in the United States from 2022 to 2027 in a multiscale map by country, state, county, ZIP Code, tract, and block group. The pop-up is configured to include the following information for each geography level:2022 total population2027 total population estimate 2000-2010 annual population growth rate2010-2022 annual population growth rate2022-2027 annual projected population growth ratePermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.
This web map indicates the annual compound rate of total population change in the United States from 2000 to 2010. Total Population is the total number of residents in an area. Residence refers to the "usual place" where a person lives. Total Population for 2000 is from the U.S. Census 2000. The 2010 Total Population variable is estimated by Esri's proven annual demographic update methodology that blends GIS with statistical technology and a unique combination of data sources.The map is symbolized so that you can easily distinguish areas of population growth (i.e. shades of green) from areas of population decline (i.e. shades of red). It uses a 3 D effect to further emphasize those trends. The map reveals interesting patterns of recent population change in various regions and communities across the United States.The map shows population change at the County and Census Tract levels. The geography depicts Counties at 25m to 750k scale, Census Tracts at 750k to 100k scale.Esri's Updated Demographics (2010/2015) – Population, age, income, sex, race, marital status and other variables are among the variables included in the database. Each year, Esri's data development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of geographies. See Updated Demographics for more information.
According to a population projection based on 2020 Census Data, in 2040, California's population will amount to ***** million inhabitants.
In the past four centuries, the population of the Thirteen Colonies and United States of America has grown from a recorded 350 people around the Jamestown colony in Virginia in 1610, to an estimated 346 million in 2025. While the fertility rate has now dropped well below replacement level, and the population is on track to go into a natural decline in the 2040s, projected high net immigration rates mean the population will continue growing well into the next century, crossing the 400 million mark in the 2070s. Indigenous population Early population figures for the Thirteen Colonies and United States come with certain caveats. Official records excluded the indigenous population, and they generally remained excluded until the late 1800s. In 1500, in the first decade of European colonization of the Americas, the native population living within the modern U.S. borders was believed to be around 1.9 million people. The spread of Old World diseases, such as smallpox, measles, and influenza, to biologically defenseless populations in the New World then wreaked havoc across the continent, often wiping out large portions of the population in areas that had not yet made contact with Europeans. By the time of Jamestown's founding in 1607, it is believed the native population within current U.S. borders had dropped by almost 60 percent. As the U.S. expanded, indigenous populations were largely still excluded from population figures as they were driven westward, however taxpaying Natives were included in the census from 1870 to 1890, before all were included thereafter. It should be noted that estimates for indigenous populations in the Americas vary significantly by source and time period. Migration and expansion fuels population growth The arrival of European settlers and African slaves was the key driver of population growth in North America in the 17th century. Settlers from Britain were the dominant group in the Thirteen Colonies, before settlers from elsewhere in Europe, particularly Germany and Ireland, made a large impact in the mid-19th century. By the end of the 19th century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. It is also estimated that almost 400,000 African slaves were transported directly across the Atlantic to mainland North America between 1500 and 1866 (although the importation of slaves was abolished in 1808). Blacks made up a much larger share of the population before slavery's abolition. Twentieth and twenty-first century The U.S. population has grown steadily since 1900, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. Since WWII, the U.S. has established itself as the world's foremost superpower, with the world's largest economy, and most powerful military. This growth in prosperity has been accompanied by increases in living standards, particularly through medical advances, infrastructure improvements, clean water accessibility. These have all contributed to higher infant and child survival rates, as well as an increase in life expectancy (doubling from roughly 40 to 80 years in the past 150 years), which have also played a large part in population growth. As fertility rates decline and increases in life expectancy slows, migration remains the largest factor in population growth. Since the 1960s, Latin America has now become the most common origin for migrants in the U.S., while immigration rates from Asia have also increased significantly. It remains to be seen how immigration restrictions of the current administration affect long-term population projections for the United States.
description: This map shows the average annual population growth in the United States between 2010 and 2012. Total Population is the total number of residents in an area. Residence refers to the 'usual place 'where a person lives. The United States grew by 0.63% per year from 2010 to 2012, according to Esri.The geography depicts States at greater than 50m scale, Counties at 7.5m to 50m scale, Census Tracts at 200k to 7.5m scale, and Census Block Groups at less than 200k scale.Scale Range: 1:591,657,528 down to 1:72,224.For more information on this map, including the terms of use, visit us online.; abstract: This map shows the average annual population growth in the United States between 2010 and 2012. Total Population is the total number of residents in an area. Residence refers to the 'usual place 'where a person lives. The United States grew by 0.63% per year from 2010 to 2012, according to Esri.The geography depicts States at greater than 50m scale, Counties at 7.5m to 50m scale, Census Tracts at 200k to 7.5m scale, and Census Block Groups at less than 200k scale.Scale Range: 1:591,657,528 down to 1:72,224For more information on this map, including our terms of use, visit us online at http://goto.arcgisonline.com/maps/Demographics/USA_Recent_Population_ChangeThis map shows the average annual population growth in the United States between 2010 and 2012.2010-2012 Annual Population Growth RateBlock GroupsTractsCountiesStates
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the state of California from 1900 to 2024.
The world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census is a decennial census mandated by Article I, Section 2 of the United States Constitution, which states: "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers."
Source: https://en.wikipedia.org/wiki/United_States_Census
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole.
The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_usa
https://cloud.google.com/bigquery/public-data/us-census
Dataset Source: United States Census Bureau
Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What are the ten most populous zip codes in the US in the 2010 census?
What are the top 10 zip codes that experienced the greatest change in population between the 2000 and 2010 censuses?
https://cloud.google.com/bigquery/images/census-population-map.png" alt="https://cloud.google.com/bigquery/images/census-population-map.png">
https://cloud.google.com/bigquery/images/census-population-map.png
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
The North Carolina State Demographer data platform houses the latest data produced by the Office of the State Demographer. The platform allows users to create visualizations, download full (or partial) datasets, and create maps. Registered users can save their visualizations and be notified of dataset updates. This new platform is a subdomain of OSBM’s Log In to North Carolina (LINC) – a service containing over 900 data items including items pertaining to population, labor force, education, transportation, etc. LINC includes topline statistics from the State Demographer’s population estimates and projections while the North Carolina State Demographer data platform includes more detailed datasets for users requiring more detailed demographic information.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).
Census Current (2022) Legal and Statistical Entities Web Map Service; January 1, 2022 vintage.
Census Tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity that are updated by local participants prior to each decennial census as part of the Census Bureau's Participant Statistical Areas Program. The Census Bureau delineates census tracts in situations where no local participant existed or where state, local, or tribal governments declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of statistical data.
Census tracts generally have a population size between 1,200 and 8,000 people with an optimum size of 4,000 people. A census tract usually covers a contiguous area; however the spatial size of census tracts varies widely depending on the density of settlement. Census tract boundaries are delineated with the intention of being maintained over a long time so that statistical comparisons can be made from census to census. Census tracts occasionally are split due to population growth or merged as a result of substantial population decline.
Census tract boundaries generally follow visible and identifiable features. They may follow non-visible legal boundaries, such as minor civil division (MCD) or incorporated place boundaries in some states and situations, to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. Tribal census tracts are a unique geographic entity defined within federally recognized American Indian reservations and can cross state and county boundaries. Tribal census tracts may be completely different from the census tracts and block groups defined by state and county.
The 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is published by the Research & Analytics Group at the Atlanta Regional Commission to show population change by utilizing the 2020 redistricting data and comparable data for 2010, 2000, and 1990 across multiple geographies for the State of Georgia. For a deep dive into the data model including every specific metric, see the Data Manifest. The manifest details ARC-defined naming conventions, names/descriptions and topics where applicable, summary levels; source tables; notes and so forth for all metrics.
It should be noted:The 2020 redistricting release is not as detailed in terms of data compared to ACS estimates; data include total population, population by race and ethnicity, and "voting age" population (i.e., adults) by race and ethnicity, adults are subtracted from the total population to show children (ages 0-17); total number of housing units, occupied housing units, and vacant housing units. Percent and change measures are calculated over four different Censuses.These data are expressed in terms of 2020 geographies such as the new 2020 Census tracts. This means that that historical data for geographies like cities have been estimated to the 2020 boundaries. For example, the city of Atlanta, which has made multiple annexations since 1990, has a higher estimated 1990 population of 400,452 (2020 boundaries) than the 394,017 reported in the 1990 Census (1990 boundaries).Due to changes in block geographies and annexations, 2010 population totals for custom geographies such as City of Atlanta NSAs may differ slightly from the numbers we have published in the past.The procedure to re-estimate historical data to 2020 blocks often results in fractional population (e.g., 1.25 instead of 1 or 2). Counts have been rounded to the nearest whole, but to be more precise, all aggregation, percent, and change measures were performed pre-rounding. Some change measures may appear curious as a result. For example, 100.4 - 20.8 = 79.6 which rounds to 80. But if rounded first, 100.4 rounds down to 100, 20.8 rounds up to 21; 100 - 21 = 79.Asian and Pacific Islander categories are combined to maximize compatibility with the 1990 release, which reported the two groups as a single category. Caution should be exercised with 1990 race data because the Census Bureau changed to the current system (which allows people to identify as biracial or multiracial) starting only in 2000.The "other" race category includes American Indian and Alaska Natives, people identifying with "some other race" and (for 2000 forward), people who identify as biracial or multiracial.For more information regarding Decennial Census source data, visit 2020 Census website
The 2019 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
This map shows the change in total population in the United States between the 2000 and 2010 Census. The change is represented by a percent change. Positive values show overall growth, which negative numbers show overall decline.The map shows this pattern for states, counties, tracts, and block groups. There is increasing geographic detail as you zoom in, and only one geography is configured to show at any time. The data source is the US Census Bureau, and the vintage is 2010. The original service and data metadata can be found here.
Reference Layer: Popular Demographics in the United States_This feature layer provides Esri 2018 demographic estimates for popular variables including: 2018 Total Population, 2018 Household Population, 2018 Median Age, 2018 Median Household Income, 2018 Per Capita Income, 2018 Diversity Index and many more. Data is available from country, state, county, ZIP Code, tract, and block group level with adjustable scale visibility. It is intended as a sample feature service to demonstrate smart mapping capabilities with Esri's Demographic data. Example feature views and web maps built from this layer include:Predominant Generations in the United StatesUnemployment in the United StatesMedian Home Value and IncomePopulation Growth or Decline?For more information, visit the Updated Demographics documentation. For a full list of variables, click the Data tab. Note: This layer will not being continuously updated or maintained. Note: This data has been filtered from a national dataset: https://bcgis.maps.arcgis.com/home/item.html?id=2718975e52e24286acf8c3882b7ceb18 to only show Broward County Statistics
https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
50 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2050.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents. Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley. How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life? Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
City of Mesa population provided by Census Bureau Population Estimates Program (PEP) updated annually as of July 1. See Population and Housing Unit Estimates. Census PEP estimates are used for state revenue sharing per AZ statute (42-5033.01). This dataset is the authoritative source for all city metrics such as Crimes or Traffic Collisions per 1,000 residents.
2025-2040 population projections provided by Maricopa County Association of Governments (MAG) and adopted June 2023. MAG's planning area and incorporated jurisdiction projections are published at 2023 MAG Socioeconomic Projections
Other sources of population estimates include US Census American Community Survey 1-year and 5-year Estimates at https://citydata.mesaaz.gov/d/n5gn-m5c3 and https://citydata.mesaaz.gov/Economic-Development/d/9nqf-ygw6, Arizona Office of Economic Opportunity (OEO) at https://www.azcommerce.com/oeo/population/population-estimates/ (see link for OEO methodology which differs slightly from official US Census Estimates) and City of Mesa Office of Economic Development at https://www.selectmesa.com/business-environment/demographics (ESRI Community Analyst).
Estimated number of persons by quarter of a year and by year, Canada, provinces and territories.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The data for this map is based on the recently released 2010 census data, and shows that all counties within the state registered a population increase except Plumas, Sierra, and Alpine counties. Placer, Kern, and Riverside counties experienced the largest population growth with more than a 25% increase over the past 10 years.
Important Note: This item is in mature support as of June 2023 and will be retired in December 2025. This map shows the estimated annual growth rate of population in the United States from 2022 to 2027 in a multiscale map by country, state, county, ZIP Code, tract, and block group. The pop-up is configured to include the following information for each geography level:2022 total population2027 total population estimate 2000-2010 annual population growth rate2010-2022 annual population growth rate2022-2027 annual projected population growth ratePermitted use of this data is covered in the DATA section of the Esri Master Agreement (E204CW) and these supplemental terms.