Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.
In this dataset:
We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.
Please cite this dataset as:
Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4
Organization of data
The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:
HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.
HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.
HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.
target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.
Column names
YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.
H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)
In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.
License Creative Commons Attribution 4.0 International.
Related datasets
Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612
Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/37786/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37786/terms
The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who do and do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population (CNP) at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Units (PSUs) and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the CNP at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort.At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the CNP at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the CNP at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort.Please refer to the Public-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Wave 4.5 was a special data collection for youth only who were aged 12 to 17 at the time of the Wave 4.5 interview. Wave 4.5 was the fourth annual follow-up wave for those who were members of the Wave 1 Cohort. For those who were sampled at Wave 4, Wave 4.5 was the first annual follow-up wave.Wave 5.5, conducted in 2020, was a special data collection for Wave 4 Cohort youth and young adults ages 13 to 19 at the time of the Wave 5.5 interview. Also in 2020, a subsample of Wave 4 Cohort adults ages 20 and older were interviewed via the PATH Study Adult Telephone Survey (PATH-ATS).Wave 7.5 was a special collection for Wave 4 and Wave 7 Cohort youth and young adults ages 12 to 22 at the time of the Wave 7.5 interview. For those who were sampled at Wave 7, Wave 7.5 was the first annual follow-up wave. Dataset 1002 (DS1002) contains the data from the Wave 4.5 Youth and Parent Questionnaire. This file contains 1,395 variables and 13,131 cases. Of these cases, 11,378 are continuing youth having completed a prior Youth Interview. The other 1,753 cases are "aged-up youth" having previously been sampled as "shadow youth." Datasets 1112, 1212, and 1222, (DS1112, DS1212, and DS1222) are data files comprising the weight variables for Wave 4.5. The "all-waves" weight file contains weights for participants in the Wave 1 Cohort who completed a Wave 4.5 Youth Interview and completed interviews (if old enough to do so) or verified their information with the study (if not old enough to be interviewed) in Waves 1, 2, 3, and 4. There are two separate files with "single wave" weights: one for the Wave 1 Cohort and one for the Wave 4 Cohort. The "single-wave" weight file for the Wave 1 Cohort contains weights for youth who completed an interview in Wave 1 an
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Azusa population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Azusa. The dataset can be utilized to understand the population distribution of Azusa by age. For example, using this dataset, we can identify the largest age group in Azusa.
Key observations
The largest age group in Azusa, CA was for the group of age 20 to 24 years years with a population of 4,973 (10.08%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Azusa, CA was the 85 years and over years with a population of 407 (0.83%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Azusa Population by Age. You can refer the same here
Facebook
TwitterDemographic characteristic of study population.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Global comparison among the three countries.*Median (Q1, Q3).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Descriptive statistics of the traits in the study population.
Facebook
TwitterThis statistic depicts the number of research personnel per 10,000 population in Taiwan from 2012 to 2022. In 2022, the number of researchers per 10,000 people ranged at **** in Taiwan.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Azusa population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Azusa. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 33,154 (67.22% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Azusa Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of South Salt Lake by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of South Salt Lake across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 52.09% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Salt Lake Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterStudy population- demographics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
High resolution, contemporary data on human population distributions are vital for measuring impacts of population growth, monitoring human-environment interactions and for planning and policy development. Many methods are used to disaggregate census data and predict population densities for finer scale, gridded population data sets. We present a new semi-automated dasymetric modeling approach that incorporates detailed census and ancillary data in a flexible, “Random Forest” estimation technique. We outline the combination of widely available, remotely-sensed and geospatial data that contribute to the modeled dasymetric weights and then use the Random Forest model to generate a gridded prediction of population density at ~100 m spatial resolution. This prediction layer is then used as the weighting surface to perform dasymetric redistribution of the census counts at a country level. As a case study we compare the new algorithm and its products for three countries (Vietnam, Cambodia, and Kenya) with other common gridded population data production methodologies. We discuss the advantages of the new method and increases over the accuracy and flexibility of those previous approaches. Finally, we outline how this algorithm will be extended to provide freely-available gridded population data sets for Africa, Asia and Latin America.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of United States was 333,287,557, a 0.38% increase year-by-year from 2021. Previously, in 2021, United States population was 332,031,554, an increase of 0.16% compared to a population of 331,511,512 in 2020. Over the last 20 plus years, between 2000 and 2022, population of United States increased by 51,125,146. In this period, the peak population was 333,287,557 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Year. You can refer the same here
Facebook
TwitterDemographical and clinical summary of study population.
Facebook
TwitterThe Bangladesh Demographic and Health Survey (BDHS) is part of the worldwide Demographic and Health Surveys program, which is designed to collect data on fertility, family planning, and maternal and child health.
The BDHS is intended to serve as a source of population and health data for policymakers and the research community. In general, the objectives of the BDHS are to: - assess the overall demographic situation in Bangladesh, - assist in the evaluation of the population and health programs in Bangladesh, and - advance survey methodology.
More specifically, the objective of the BDHS is to provide up-to-date information on fertility and childhood mortality levels; nuptiality; fertility preferences; awareness, approval, and use of family planning methods; breastfeeding practices; nutrition levels; and maternal and child health. This information is intended to assist policymakers and administrators in evaluating and designing programs and strategies for improving health and family planning services in the country.
National
Sample survey data
Bangladesh is divided into six administrative divisions, 64 districts (zillas), and 490 thanas. In rural areas, thanas are divided into unions and then mauzas, a land administrative unit. Urban areas are divided into wards and then mahallas. The 1996-97 BDHS employed a nationally-representative, two-stage sample that was selected from the Integrated Multi-Purpose Master Sample (IMPS) maintained by the Bangladesh Bureau of Statistics. Each division was stratified into three groups: 1 ) statistical metropolitan areas (SMAs), 2) municipalities (other urban areas), and 3) rural areas. 3 In the rural areas, the primary sampling unit was the mauza, while in urban areas, it was the mahalla. Because the primary sampling units in the IMPS were selected with probability proportional to size from the 1991 Census frame, the units for the BDHS were sub-selected from the IMPS with equal probability so as to retain the overall probability proportional to size. A total of 316 primary sampling units were utilized for the BDHS (30 in SMAs, 42 in municipalities, and 244 in rural areas). In order to highlight changes in survey indicators over time, the 1996-97 BDHS utilized the same sample points (though not necessarily the same households) that were selected for the 1993-94 BDHS, except for 12 additional sample points in the new division of Sylhet. Fieldwork in three sample points was not possible (one in Dhaka Cantonment and two in the Chittagong Hill Tracts), so a total of 313 points were covered.
Since one objective of the BDHS is to provide separate estimates for each division as well as for urban and rural areas separately, it was necessary to increase the sampling rate for Barisal and Sylhet Divisions and for municipalities relative to the other divisions, SMAs and rural areas. Thus, the BDHS sample is not self-weighting and weighting factors have been applied to the data in this report.
Mitra and Associates conducted a household listing operation in all the sample points from 15 September to 15 December 1996. A systematic sample of 9,099 households was then selected from these lists. Every second household was selected for the men's survey, meaning that, in addition to interviewing all ever-married women age 10-49, interviewers also interviewed all currently married men age 15-59. It was expected that the sample would yield interviews with approximately 10,000 ever-married women age 10-49 and 3,000 currently married men age 15-59.
Note: See detailed in APPENDIX A of the survey report.
Face-to-face
Four types of questionnaires were used for the BDHS: a Household Questionnaire, a Women's Questionnaire, a Men' s Questionnaire and a Community Questionnaire. The contents of these questionnaires were based on the DHS Model A Questionnaire, which is designed for use in countries with relatively high levels of contraceptive use. These model questionnaires were adapted for use in Bangladesh during a series of meetings with a small Technical Task Force that consisted of representatives from NIPORT, Mitra and Associates, USAID/Bangladesh, the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Population Council/Dhaka, and Macro International Inc (see Appendix D for a list of members). Draft questionnaires were then circulated to other interested groups and were reviewed by the BDHS Technical Review Committee (see Appendix D for list of members). The questionnaires were developed in English and then translated into and printed in Bangla (see Appendix E for final version in English).
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview. In addition, information was collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, and ownership of various consumer goods.
The Women's Questionnaire was used to collect information from ever-married women age 10-49. These women were asked questions on the following topics: - Background characteristics (age, education, religion, etc.), - Reproductive history, - Knowledge and use of family planning methods, - Antenatal and delivery care, - Breastfeeding and weaning practices, - Vaccinations and health of children under age five, - Marriage, - Fertility preferences, - Husband's background and respondent's work, - Knowledge of AIDS, - Height and weight of children under age five and their mothers.
The Men's Questionnaire was used to interview currently married men age 15-59. It was similar to that for women except that it omitted the sections on reproductive history, antenatal and delivery care, breastfeeding, vaccinations, and height and weight. The Community Questionnaire was completed for each sample point and included questions about the existence in the community of income-generating activities and other development organizations and the availability of health and family planning services.
A total of 9,099 households were selected for the sample, of which 8,682 were successfully interviewed. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants had left for an extended period at the time they were visited by the interviewing teams. Of the 8,762 households occupied, 99 percent were successfully interviewed. In these households, 9,335 women were identified as eligible for the individual interview (i.e., ever-married and age 10-49) and interviews were completed for 9,127 or 98 percent of them. In the half of the households that were selected for inclusion in the men's survey, 3,611 eligible ever-married men age 15-59 were identified, of whom 3,346 or 93 percent were interviewed.
The principal reason for non-response among eligible women and men was the failure to find them at home despite repeated visits to the household. The refusal rate was low.
Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the BDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the BDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the BDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the BDHS is the ISSA Sampling Error Module. This module used the Taylor
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph shows the citations of ^'s papers published in each year.
Facebook
Twitter*log transformed.Variables were described as mean ± SD or median (ranges).BMI, body mass index; HOMA-IR, homeostasis model assessment of insulin resistance; HOMA-β, homeostasis model assessment of pancreatic β-cell function.Baseline characteristics of the study population.
Facebook
Twitter*Baseline includes all medications used on at least 1 day between informed consent and randomization (inclusive) and on at least 1 day between randomization and the first day of randomized drug intake (inclusive). BMI, body mass index; FEV1, forced expiratory volume in 1 second; LABA, long-acting β-agonist; SABA, short-acting β-agonist; SD, standard deviation.Patient demographics and characteristics of the study population at baseline.
Facebook
TwitterHCV: Hepatitis C virus, NASH: Non-alcoholic steatohepatitis, PBC: Primary biliary cirrhosis, PSC: Primary sclerosing cholangitis, DM: Diabetes Mellitus.Data are expressed as number (%), mean [SD], or median [range].
Facebook
TwitterNA, not applicable.Viral load measurement by Roche Amplicor Monitor v1.5.Descriptive statistics for study population.
Facebook
TwitterCharacteristics of the study population of Sample II, the population with incident SVI/B, and the excluded population, 2004-2015, AOK data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.
In this dataset:
We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.
Please cite this dataset as:
Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4
Organization of data
The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:
HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.
HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.
HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.
target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.
Column names
YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.
H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)
In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.
License Creative Commons Attribution 4.0 International.
Related datasets
Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612
Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564