In 2023, the number of Hispanic and Latino residents in California had surpassed the number of White residents, with about ***** million Hispanics compared to ***** million White residents. California’s residents California has always held a special place in the American imagination as a place where people can start a new life and increase their personal fortunes. Perhaps due partly to this, California is the most populous state in the United States, with over ** million residents, which is a significant increase from the number of residents in 1960. California is also the U.S. state with the largest population of foreign born residents. The Californian economy The Californian economy is particularly strong and continually contributes a significant amount to the gross domestic product (GDP) of the United States. Its per-capita GDP is also high, which indicates a high standard of living for its residents. Additionally, the median household income in California has more than doubled from 1990 levels.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of California by race. It includes the distribution of the Non-Hispanic population of California across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of California across relevant racial categories.
Key observations
Of the Non-Hispanic population in California, the largest racial group is White alone with a population of 13.57 million (57.48% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of El Segundo by race. It includes the distribution of the Non-Hispanic population of El Segundo across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of El Segundo across relevant racial categories.
Key observations
Of the Non-Hispanic population in El Segundo, the largest racial group is White alone with a population of 9,362 (70.06% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for El Segundo Population by Race & Ethnicity. You can refer the same here
In 2023, there were over 1.23 million White residents of Los Angeles city in California. In comparison, there were 482,035 Asian residents and 323,772 Black or African American residents amongst the Los Angeles population in that year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Duarte by race. It includes the distribution of the Non-Hispanic population of Duarte across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Duarte across relevant racial categories.
Key observations
Of the Non-Hispanic population in Duarte, the largest racial group is White alone with a population of 5,067 (46.78% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Duarte Population by Race & Ethnicity. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Not Hispanic or Latino, Two or More Races, Two Races Excluding Some Other Race, and Three or More Races (5-year estimate) in Los Angeles County, CA (B03002011E006037) from 2009 to 2023 about Los Angeles County, CA; Los Angeles; CA; non-hispanic; estimate; persons; 5-year; population; and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Two or More Races, Two Races Including Some Other Race (5-year estimate) in Kern County, CA (B03002020E006029) from 2009 to 2023 about Kern County, CA; Bakersfield; latino; hispanic; CA; estimate; persons; 5-year; population; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of San Bernardino by race. It includes the distribution of the Non-Hispanic population of San Bernardino across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of San Bernardino across relevant racial categories.
Key observations
Of the Non-Hispanic population in San Bernardino, the largest racial group is White alone with a population of 26,089 (38.70% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for San Bernardino Population by Race & Ethnicity. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Not Hispanic or Latino, Two or More Races, Two Races Excluding Some Other Race, and Three or More Races (5-year estimate) in Orange County, CA (B03002011E006059) from 2009 to 2023 about Orange County, CA; Los Angeles; CA; non-hispanic; estimate; persons; 5-year; population; and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Not Hispanic or Latino, Two or More Races, Two Races Including Some Other Race (5-year estimate) in Amador County, CA (B03002010E006005) from 2009 to 2023 about Amador County, CA; CA; non-hispanic; estimate; persons; 5-year; population; and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Two or More Races, Two Races Excluding Some Other Race, and Three or More Races (5-year estimate) in Placer County, CA (B03002021E006061) from 2009 to 2023 about Placer County, CA; Sacramento; latino; hispanic; CA; estimate; persons; 5-year; population; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains estimates for the number of healthcare professionals in 15 different healthcare categories (e.g., Registered Nurse, Dentist, License Clinical Social Worker, etc.) based on completion of license renewal by Race/Ethnicity. There are two timeframes: all current licenses and recent licenses (since 2017). California population estimates are also included to provide a marker for each Race/Ethnicity. Each healthcare professional category can be compared across Race/Ethnicity groups and compared to statewide population estimates, so Race/Ethnicity shortages can be identified for each healthcare professional category. For instance, a notable difference between healthcare professional category and statewide population would indicate either underrepresentation or overrepresentation for that Race/Ethnicity, depending on the direction of the difference.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Yearly statewide and by-Continuum of Care total counts of individuals receiving homeless response services by age group, race, gender, veteran status, and disability status.
This data comes from the Homelessness Data Integration System (HDIS), a statewide data warehouse which compiles and processes data from all 44 California Continuums of Care (CoC)—regional homelessness service coordination and planning bodies. Each CoC collects data about the people it serves through its programs, such as homelessness prevention services, street outreach services, permanent housing interventions and a range of other strategies aligned with California’s Housing First objectives.
The dataset uploaded reflects the 2024 HUD Data Standard Changes. Previously, Race and Ethnicity are separate files but are now combined.
Information updated as of 2/06/2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Danville by race. It includes the distribution of the Non-Hispanic population of Danville across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Danville across relevant racial categories.
Key observations
Of the Non-Hispanic population in Danville, the largest racial group is White alone with a population of 28,296 (71.26% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Danville Population by Race & Ethnicity. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Two or More Races, Two Races Excluding Some Other Race, and Three or More Races (5-year estimate) in San Francisco County, CA (B03002021E006075) from 2009 to 2023 about San Francisco, latino, hispanic, CA, estimate, persons, 5-year, population, and USA.
In 1980, the National Institute of Justice awarded a grant to the Cornell University College of Human Ecology for the establishment of the Center for the Study of Race, Crime, and Social Policy in Oakland, California. This center mounted a long-term research project that sought to explain the wide variation in crime statistics by race and ethnicity. Using information from eight ethnic communities in Oakland, California, representing working- and middle-class Black, White, Chinese, and Hispanic groups, as well as additional data from Oakland's justice systems and local organizations, the center conducted empirical research to describe the criminalization process and to explore the relationship between race and crime. The differences in observed patterns and levels of crime were analyzed in terms of: (1) the abilities of local ethnic communities to contribute to, resist, neutralize, or otherwise affect the criminalization of its members, (2) the impacts of criminal justice policies on ethnic communities and their members, and (3) the cumulative impacts of criminal justice agency decisions on the processing of individuals in the system. Administrative records data were gathered from two sources, the Alameda County Criminal Oriented Records Production System (CORPUS) (Part 1) and the Oakland District Attorney Legal Information System (DALITE) (Part 2). In addition to collecting administrative data, the researchers also surveyed residents (Part 3), police officers (Part 4), and public defenders and district attorneys (Part 5). The eight study areas included a middle- and low-income pair of census tracts for each of the four racial/ethnic groups: white, Black, Hispanic, and Asian. Part 1, Criminal Oriented Records Production System (CORPUS) Data, contains information on offenders' most serious felony and misdemeanor arrests, dispositions, offense codes, bail arrangements, fines, jail terms, and pleas for both current and prior arrests in Alameda County. Demographic variables include age, sex, race, and marital status. Variables in Part 2, District Attorney Legal Information System (DALITE) Data, include current and prior charges, days from offense to charge, disposition, and arrest, plea agreement conditions, final results from both municipal court and superior court, sentence outcomes, date and outcome of arraignment, disposition, and sentence, number and type of enhancements, numbers of convictions, mistrials, acquittals, insanity pleas, and dismissals, and factors that determined the prison term. For Part 3, Oakland Community Crime Survey Data, researchers interviewed 1,930 Oakland residents from eight communities. Information was gathered from community residents on the quality of schools, shopping, and transportation in their neighborhoods, the neighborhood's racial composition, neighborhood problems, such as noise, abandoned buildings, and drugs, level of crime in the neighborhood, chances of being victimized, how respondents would describe certain types of criminals in terms of age, race, education, and work history, community involvement, crime prevention measures, the performance of the police, judges, and attorneys, victimization experiences, and fear of certain types of crimes. Demographic variables include age, sex, race, and family status. For Part 4, Oakland Police Department Survey Data, Oakland County police officers were asked about why they joined the police force, how they perceived their role, aspects of a good and a bad police officer, why they believed crime was down, and how they would describe certain beats in terms of drug availability, crime rates, socioeconomic status, number of juveniles, potential for violence, residential versus commercial, and degree of danger. Officers were also asked about problems particular neighborhoods were experiencing, strategies for reducing crime, difficulties in doing police work well, and work conditions. Demographic variables include age, sex, race, marital status, level of education, and years on the force. In Part 5, Public Defender/District Attorney Survey Data, public defenders and district attorneys were queried regarding which offenses were increasing most rapidly in Oakland, and they were asked to rank certain offenses in terms of seriousness. Respondents were also asked about the public's influence on criminal justice agencies and on the performance of certain criminal justice agencies. Respondents were presented with a list of crimes and asked how typical these offenses were and what factors influenced their decisions about such cases (e.g., intent, motive, evidence, behavior, prior history, injury or loss, substance abuse, emotional trauma). Other variables measured how often and under what circumstances the public defender and client and the public defender and the district attorney agreed on the case, defendant characteristics in terms of who should not be put on the stand, the effects of Proposition 8, public defender and district attorney plea guidelines, attorney discretion, and advantageous and disadvantageous characteristics of a defendant. Demographic variables include age, sex, race, marital status, religion, years of experience, and area of responsibility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Northern California region's Hispanic and/or Black, Indigenous or person of color (HSPBIPOC) population. The variable HSPBIPOC is equivalent to all individuals who select a combination of racial and ethnic identity in response to the Census questionnaire EXCEPT those who select "not Hispanic" for the ethnic identity question, and "white race alone" for the racial identity question. This is the most encompassing possible definition of racial and ethnic identities that may be associated with historic underservice by agencies, or be more likely to express environmental justice concerns (as compared to predominantly non-Hispanic white communities). Until 2021, federal agency guidance for considering environmental justice impacts of proposed actions focused on how the actions affected "racial or ethnic minorities." "Racial minority" is an increasingly meaningless concept in the USA, and particularly so in California, where only about 3/8 of the state's population identifies as non-Hispanic and white race alone - a clear majority of Californians identify as Hispanic and/or not white. Because many federal and state map screening tools continue to rely on "minority population" as an indicator for flagging potentially vulnerable / disadvantaged/ underserved populations, our analysis includes the variable HSPBIPOC which is effectively "all minority" population according to the now outdated federal environmental justice direction. A more meaningful analysis for the potential impact of forest management actions on specific populations considers racial or ethnic populations individually: e.g., all people identifying as Hispanic regardless of race; all people identifying as American Indian, regardless of Hispanic ethnicity; etc.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as HSPBIPOC alone to the proportion of all people that live within the 1,207 block groups in the Northern California RRK region that identify as HSPBIPOC alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of HSPBIPOC individuals compared to the Northern California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then HSPBIPOC individuals are highly concentrated locally.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the Southern California region's Asian American population. The variable ASIANALN records all individuals who select Asian as their SOLE racial identity in response to the Census questionnaire, regardless of their response to the Hispanic ethnicity question. Both Hispanic and non-Hispanic in the Census questionnaire are potentially associated with the Asian race alone.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit that identify as ASIANALN alone to the proportion of all people that live within the 13,312 block groups in the Southern California RRK region that identify as ASIANALN alone. Example: if 5.2% of people in a block group identify as HSPBIPOC, the block group has twice the proportion of ASIANALN individuals compared to the Southern California RRK region (2.6%), and more than three times the proportion compared to the entire state of California (1.6%). If the local proportion is twice the regional proportion, then ASIANALN individuals are highly concentrated locally.
Data Source: CA Department of Finance, Demographic Research Unit
Report P-3: Population Projections, California, 2010-2060 (Baseline 2019 Population Projections; Vintage 2020 Release). Sacramento: California. July 2021.
This data biography shares the how, who, what, where, when, and why about this dataset. We, the epidemiology team at Napa County Health and Human Services Agency, Public Health Division, created it to help you understand where the data we analyze and share comes from. If you have any further questions, we can be reached at epidemiology@countyofnapa.org.
Data dashboard featuring this data: Napa County Demographics https://data.countyofnapa.org/stories/s/bu3n-fytj
How was the data collected? Population projections use the following demographic balancing equation: Current Population = Previous Population + (Births - Deaths) +Net Migration
Previous Population: the starting point for the population projection estimates is the 2020 US Census, informed by the Population Estimates Program data.
Births and Deaths: birth and death totals came from the California Department of Public Health, Vital Statistics Branch, which maintains birth and death records for California.
Net Migration: multiple sources of administrative records were used to estimate net migration, including driver’s license address changes, IRS tax return data, Medicare and Medi-Cal enrollment, federal immigration reports, elementary school enrollments, and group quarters population.
Who was included and excluded from the data? Previous Population: The goal of the US Census is to reflect all populations residing in a given geographic area. Results of two analyses done by the US Census Bureau showed that the 2020 Census total population counts were consistent with recent counts despite the challenges added by the pandemic. However, some populations were undercounted (the Black or African American population, the American Indian or Alaska Native population living on a reservation, the Hispanic or Latino population, and people who reported being of Some Other Race), and some were overcounted (the Non-Hispanic White population and the Asian population). Children, especially children younger than 4, were also undercounted.
Births and Deaths: Birth records include all people who are born in California as well as births to California residents that happened out of state. Death records include people who died while in California, as well as deaths of California residents that occurred out of state. Because birth and death record data comes from a registration process, the demographic information provided may not be accurate or complete.
Net Migration: each of the multiple sources of administrative records that were used to estimate net migration include and exclude different groups. For details about methodology, see https://dof.ca.gov/wp-content/uploads/sites/352/2023/07/Projections_Methodology.pdf.
Where was the data collected? Data is collected throughout California. This subset of data includes Napa County.
When was the data collected? This subset of Napa County data is from Report P-3: Population Projections, California, 2010-2060 (Baseline 2019 Population Projections; Vintage 2020 Release). Sacramento: California. July 2021.
These 2019 baseline projections incorporate the latest historical population, birth, death, and migration data available as of July 1, 2020. Historical trends from 1990 through 2020 for births, deaths, and migration are examined. County populations by age, sex, and race/ethnicity are projected to 2060.
Why was the data collected? The population projections were prepared under the mandate of the California Government Code (Cal. Gov't Code § 13073, 13073.5).
Where can I learn more about this data? https://dof.ca.gov/Forecasting/Demographics/Projections/ https://dof.ca.gov/wp-content/uploads/sites/352/Forecasting/Demographics/Documents/P3_Dictionary.txt https://dof.ca.gov/wp-content/uploads/sites/352/2023/07/Projections_Methodology.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of California City by race. It includes the distribution of the Non-Hispanic population of California City across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of California City across relevant racial categories.
Key observations
Of the Non-Hispanic population in California City, the largest racial group is White alone with a population of 4,454 (49.98% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California City Population by Race & Ethnicity. You can refer the same here
In 2023, the number of Hispanic and Latino residents in California had surpassed the number of White residents, with about ***** million Hispanics compared to ***** million White residents. California’s residents California has always held a special place in the American imagination as a place where people can start a new life and increase their personal fortunes. Perhaps due partly to this, California is the most populous state in the United States, with over ** million residents, which is a significant increase from the number of residents in 1960. California is also the U.S. state with the largest population of foreign born residents. The Californian economy The Californian economy is particularly strong and continually contributes a significant amount to the gross domestic product (GDP) of the United States. Its per-capita GDP is also high, which indicates a high standard of living for its residents. Additionally, the median household income in California has more than doubled from 1990 levels.