Facebook
TwitterThe study included four separate surveys:
The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.
The LSMS survey of general population of Serbia in 2003 (panel survey)
The survey of Roma from Roma settlements in 2003 These two datasets are published together.
Objectives
LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.
The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).
Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]
Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.
The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).
Sample survey data [ssd]
Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.
The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.
The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.
Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.
Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.
Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.
The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.
Face-to-face [f2f]
In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).
During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.
In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Psychological and brain science explore human behavior and the human brain by studying volunteers who participate in these studies. Given that the mind and behavior of participants are influenced by their own biological and social factors, the generalizability of findings in these fields largely depends on the representativeness of samples. However, the representativeness of samples in psychological and brain science has long been criticized as “WEIRD” (Western, Educated, Industrialized, Rich, and Democratic). In recent years, several meta-researches have surveyed the representativeness of samples in published studies from different sub-fields, but an overall understanding of the representativeness of samples in psychological and brain science is lacking. In this review, we analyze these meta-researches to provide a comprehensive perspective on the current state of sample representativeness. Two common issues emerged across these meta-researches. Firstly, the demographics of participants were incomplete in most of the published studies. Most psychological and brain science studies reported participants' gender, age, and country, but participants' race/ethnicity, education level, and socioeconomic status were far less reported. Other important demographics, such as rural/urban division, were not reported at all. Additionally, the reporting of these demographics has increased only slightly in recent years compared to decades ago. Thus, the under-reporting of demographic information in literature was largely unchanged. Secondly, based on the reported demographics, we found that samples in the field are far from being representative of the world population: most participants are young, highly educated Caucasian females in Western countries; middle-aged and older, less educated, colored people in and outside Western countries are less likely to be studied. In terms of countries, Southeast Asian, African, Latin American, and Middle Eastern countries appear fewer in psychological and brain science research.These two issues may be due to the following reasons: convenience sampling dominates psychological and brain science; Western researchers dominate the field of psychology and brain science, with most of the editors-in-chief, editorial board members, and authors coming from Europe and America; psychology and brain science undervalued the effect of socioeconomic and cultural factors; and researchers mistakenly believe that findings from Western participants can be generalized to all human beings. Addressing the issue of sample representativeness in psychological and brain sciences requires a concerted effort by researchers, academic societies, journals, and funding agencies: Researchers should collect and report detailed demographic information about participants, state the limitations of generalizability, and use sampling methods that can increase representativeness whenever possible (e.g., probability sampling); academic societies should pay attention to the representativeness issues by organizing more academic symposium or workshops on this topic; journals should increase the representativeness of editorial board members and encourage more rigorous research with samples from underrepresented groups or studies that examine the generalizability of important findings; funding agencies can encourage researchers to pay more attention to study groups from underrepresented countries, and provide financial support for studying hard-to-research population. Improving sample representativeness will enhance the value of applying psychological and brain science knowledge in real-life settings and promote the building of a community with a shared future for mankind.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic data are important to wildlife managers to gauge population health, to allow populations to be utilised sustainably, and to inform conservation efforts. We analysed published demographic data on the world’s wildfowl to examine taxonomic and geographic biases in study, and to identify gaps in knowledge. Wildfowl (order: Anseriformes) are a comparatively well studied bird group which includes 169 species of duck, goose and swan. In all, 1,586 wildfowl research papers published between 1911 and 2010 were found using Web of Knowledge (WoK) and Google Scholar. Over half of the research output involved just 15 species from seven genera. Research output was strongly biased towards ‘high income’ countries, common wildfowl species, and measures of productivity, rather than survival and movement patterns. There were significantly fewer demographic data for the world’s 31 threatened wildfowl species than for non-threatened species. Since 1994, the volume of demographic work on threatened species has increased more than for non-threatened species, but still makes up only 2.7% of total research output. As an aid to research prioritisation, a metric was created to reflect demographic knowledge gaps for each species related to research output for the species, its threat status, and availability of potentially useful surrogate data from congeneric species. According to the metric, the 25 highest priority species include thirteen threatened taxa and nine species each from Asia and South America, and six from Africa.
Facebook
Twitterhttps://borealisdata.ca/api/datasets/:persistentId/versions/7.1/customlicense?persistentId=doi:10.7939/DVN/10004https://borealisdata.ca/api/datasets/:persistentId/versions/7.1/customlicense?persistentId=doi:10.7939/DVN/10004
The Population Research Laboratory (PRL), a member of the Association of Academic Survey Research Organizations (AASRO), seeks to advance the research, education and service goals of the University of Alberta by helping academic researchers and policy makers design and implement applied social science research projects. The PRL specializes in the gathering, analysis, and presentation of data about demographic, social and public issues. The PRL research team provides expert consultation and implementation of quantitative and qualitative research methods, project design, sample design, web-based, paper-based and telephone surveys, field site testing, data analysis and report writing. The PRL follows scientifically rigorous and transparent methods in each phase of a research project. Research Coordinators are members of the American Association for Public Opinion Research (AAPOR) and use best practices when conducting all types of research. The PRL has particular expertise in conducting computer-assisted telephone interviews (referred to as CATI surveys). When conducting telephone surveys, all calls are displayed as being from the "U of A PRL", a procedure that assures recipients that the call is not from a telemarketer, and thus helps increase response rates. The PRL maintains a complement of highly skilled telephone interviewers and supervisors who are thoroughly trained in FOIPP requirements, respondent selection procedures, questionnaire instructions, and neutral probing. A subset of interviewers are specially trained to convince otherwise reluctant respondents to participate in the study, a practice that increases response rates and lowers selection bias. PRL staff monitors data collection on a daily basis to allow any necessary adjustments to the volume and timing of calls and respondent selection criteria. The Population Research Laboratory (PRL) administered the 2012 Alberta Survey B. This survey of households across the province of Alberta continues to enable academic researchers, government departments, and non-profit organizations to explore a wide range of topics in a structured research framework and environment. Sponsors' research questions are asked together with demographic questions in a telephone interview of Alberta households. This data consists of the information from 1207 Alberta residence, interviewed between June 5, 2012 and June 27, 2012. The amount of responses indicates that the response rate, as calculated percentages representing the number of people who participated in the survey divided by the number selected in the eligible sample, was 27.6% for survey B. The subject ares included in the 2012 Alberta Survey B includes socio-demographic and background variables such as: household composition, age, gender, marital status, highest level of education, household income, religion, ethnic background, place of birth, employment status, home ownership, political party support and perceptions of financial status. In addition, the topics of public health and injury control, tobacco reduction, activity limitations and personal directives, unions, politics and health.
Facebook
TwitterA data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
Facebook
TwitterThe national study SNAC - The Swedish National Study on Aging and Care, includes four participating areas: SNAC-Blekinge, SNAC Kungsholmen, SNAC Nordanstig and SNAC Skåne (GÅS). In all four areas, a research centre conducts a population study and a health care system study. (Metadata related to the main study SNAC and the other participating areas can be found under the Related studies tab).
SNAC- Blekinge is headed by a steering group of researchers with Professor Johan Sanmartin Berglund as principal investigator. The project is supported by the Ministry of Health and Social Affairs, Blekinge Institute of Technology, Kristianstad University and Linnaeus University in Växjö. Blekinge County Council is cooperating with the municipality of Karlskrona. ´ In addition to the national design and objectives a number of separate research questions have been of special interest to the research team in Blekinge. These are as follows: - Dental health and care - a general assessment of elderly between 60 and 96 years of age with a particular focus on identifying osteoporosis using dental X-ray examination. - Multi-morbidity - developing an instrument for estimating incidence and prevalence of diseases in the general population. - Occupation and retirement - the purpose being to study the differences between those working and those being retired or pre-retired at the ages between 60 and 66. - Cardiovascular and cognitive diseases - does patients being treated in primary care know about incipient heart? Also is studied the relation between heart and cardiovascular diseases and diabetes mellitus and cognitive function. - Quality in the care of the elderly - a study about how social contextual and structural factors relate to the need of care and services. - OTC´s and non prescription drugs - the significance of lifestyle and psychological factors for the use of OTC and prescription medication. - Functional performance and stress-reactivity - examining how variability in functional performance in a homogenous age group relate to experimental induces stress testing the stress hypothesis on ageing.
Population study: The aim of the population study is to find out how among other things social environment, lifestyle and earlier diseases effect health and wellbeing in old age. The design is longitudinal and interdisciplinary and the study examines elderly between 60 and 96 years of age. Medical examinations, interviews, psychological tests and distributed of questionnaires are repeated every third or sixth year. The baseline examination was conducted during the period 2001 to 2003. When closed in spring 2003 examination had been made on 1402 subjects out of 2312 (aged 60-96 years old) that was invited to take part in the study. The participation rate was fully (slightly above) 60% for the whole age range from 60 to 96 years of age. Several follow-ups have been conducted.
Health care system study: Karlskrona municipality Mature Management has a need to raise awareness of aging and the care of the elderly in the future to improve care for older people. During the autumn of 2009 begins, therefore, SNAC, in cooperation with BTH, on behalf of the Mature Management, a research in Karlskrona on the municipality's elderly care is tailored to the needs of the elderly. The same type of study is done simultaneously in a number of other municipalities in the country. The survey covers all persons aged 65 years and benefiting the elderly of Mature Management in Karlskrona and / or have a lasting home care / rehabilitation. Data collection have been conducted at several occasions.
Purpose: The aim is to provide information about how social environment, lifestyle and earlier diseases effect health and wellbeing in old age. One of the special interests to the research team in Blekinge is dental health and the impact to general health.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For some categories, subjects' data were not available: 191for hypertension, 65 for diabetes mellitus, 321 for cardiovascular disease, and 491 for hyperlipidemia.Smoking index (SI) = number of cigarettes per day × years of smoking.Results for continuous variables are medians (IQR: Q1, Q3) and compared between groups by Mann-Whitney U tests. Results for categorical variables are n(%) and were compared between groups by Chi-square tests or Fisher's exact tests if any cell numbers were
Facebook
Twittera The lower limit of detection varied among subjects depending on the assay used at the clinical research site; RNA values below the limit of detection were replaced with the lower detection limit of the assay.Characteristics of the study population.
Facebook
TwitterThe Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.
National coverage
Sample survey data [ssd]
Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.
The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).
Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.
Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.
Face-to-face [f2f]
The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.
The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence
In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.
The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.
Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.
Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.
Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.
In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.
In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides a structured collection of essential country statistics, including country names, capitals, population figures, total land area, and regional classification. It is useful for demographic analysis, geographic studies, statistical modeling, and visualization purposes.
The dataset is ideal for:
Data analysis and visualization: Create maps, graphs, and reports. Machine learning applications: Use as reference data for clustering or classification tasks. Education and research: Study global population distribution and land area differences.
Facebook
TwitterThis data description concerns the psychiatric sub-studies of the Prospective Population Study of Women in Gothenburg (PPSW).
PPSW is a multidisciplinary longitudinal study, examining representative samples of women living in Gothenburg, Sweden.
The study comprises a psychiatric interview, physical examination, psychological tests, blood samples with extensive laboratory analysis and a close informant interview. It also includes collecting data related to socioeconomic status, marital status, living conditions, housing situation, education, religion, hobbies, and life events. Neurobiological investigations in the form of computed tomography (CT) and magnetic resonance imaging (MRI) of the brain and spinal puncture and analysis of brain-spinal fluid are also carried out. Medical records from all major hospitals, geriatric and psychiatric institutions and outpatient clinics in Gothenburg are evaluated to find cases of psychiatric and somatic diseases. Dementia, depression, psychotic disorders, sleep disorders, anxiety disorders, and post-traumatic stress disorder (PTSD) are diagnosed according to DSM-III-R and DSM-IV. Somatic diseases are classified according to established criteria.
Purpose:
The purpose of this study was initially to investigate anemia and health factors related to menopause, but has later also included examination of determinants among middle age women that have importance for the development of cardiovascular disease, diabetes, cancer, dementia and other mental illness in high age.
The data description only concerns the psychiatric sub-studies of the PPSW cohort from the H70 studies. To view cohorts, variables and request data, follow the links to the NEAR portal.
The PPSW started in 1968 with the recruitment of 1 467 women between the ages of 38 and 60 years. Five different birth cohorts of women born in 1908, 1914, 1918, 1922 and 1930 were followed-up in 1974‒75, 1981‒82, 1992‒93, 2000‒02, 2005‒06, 2009‒11, 2015‒16, 2018‒19, and re-examinations are planned for 2021.
The study comprises a psychiatric interview, physical examination, psychological tests, blood samples with extensive laboratory analysis and a close informant interview. It also includes collecting data related to socioeconomic status, marital status, living conditions, housing situation, education, religion, hobbies, and life events. Neurobiological investigations in the form of computed tomography (CT) and magnetic resonance imaging (MRI) of the brain and spinal puncture and analysis of brain-spinal fluid are also carried out. Medical records from all major hospitals, geriatric and psychiatric institutions and outpatient clinics in Gothenburg are evaluated to find cases of psychiatric and somatic diseases. Dementia, depression, psychotic disorders, sleep disorders, anxiety disorders, and post-traumatic stress disorder (PTSD) are diagnosed according to DSM-III-R and DSM-IV. Somatic diseases are classified according to established criteria.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/36231/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36231/terms
The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population (CNP) at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the CNP at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the CNP at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the CNP at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Dataset 0002 (DS0002) contains the data from the State Design Data. This file contains 7 variables and 82,139 cases. The state identifier in the State Design file reflects the participant's state of residence at the time of selection and recruitment for the PATH Study. Dataset 1011 (DS1011) contains the data from the Wave 1 Adult Questionnaire. This data file contains 2,021 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1012 (DS1012) contains the data from the Wave 1 Youth and Parent Questionnaire. This file contains 1,431 variables and 13,651 cases. Dataset 1411 (DS1411) contains the Wave 1 State Identifier data for Adults and has 5 variables and 32,320 cases. Dataset 1412 (DS1412) contains the Wave 1 State Identifier data for Youth (and Parents) and has 5 variables and 13,651 cases. The same 5 variables are in each State Identifier dataset, including PERSONID for linking the State Identifier to the questionnaire and biomarker data and 3 variables designating the state (state Federal Information Processing System (FIPS), state abbreviation, and full name of the state). The State Identifier values in these datasets represent participants' state of residence at the time of Wave 1, which is also their state of residence at the time of recruitment. Dataset 1611 (DS1611) contains the Tobacco Universal Product Code (UPC) data from Wave 1. This data file contains 32 variables and 8,601 cases. This file contains UPC values on the packages of tobacco products used or in the possession of adult respondents at the time of Wave 1. The UPC values can be used to identify and validate the specific products used by respondents and augment the analyses of the characteristics of tobacco products used
Facebook
TwitterThe Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.
The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.
National
The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.
Sample survey data
SAMPLE SIZE AND ALLOCATION
The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).
THE FRAME AND SAMPLE SELECTION
The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.
SAMPLE OUTCOME
The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.
Face-to-face
The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.
a) Household questionnaire
The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.
Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.
b) Individual questionnaire
The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers
The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Characteristics used by authors in their rural definitions (106 studies included 177 cited characteristics; 37 studies had no definition of rural and many articles used more than one definition).
Facebook
TwitterThe national study SNAC - The Swedish National Study on Aging and Care, includes four participating areas: SNAC-Blekinge, SNAC Kungsholmen, SNAC Nordanstig and SNAC Skåne (GÅS). In all four areas, a research centre conducts a population study and a health care system study. (Metadata related to the main study SNAC and the other participating areas can be found under the Related studies tab).
SNAC-K Kungsholmen SNAC-K is conducted by the Stockholm Gerontology Research Center in collaboration with Aging Research Center (ARC), Karolinska Institutet.
SNAC-K population study: The population study consists of a clinical examination of persons over 60 years, who live in the area of Kungsholmen/Essingeöarna. The baseline data collection includes information on present status and past events. The information has been collected through interviews, clinical examinations, and testing. All staff (nurses, psychologists, and physicians) has been trained for data collection. Each subject has been examined for six hours on average; two hours for the social interview and the assessment of physical functioning (performed by a nurse); two hours for clinical examination, including geriatric, neurological and psychiatric assessment (performed by a physician); and two hours for cognitive assessment (performed by a psychologist).
SNAC-K care system study: The care system data collection consists of continuous recording of the provision of public eldercare for persons over 65 years. For 2004-2020, data comprise all recipients of municipal eldercare in the district of Kungsholmen. Starting in 2015, data comprise all recipients of municipal eldercare in the whole municipality of Stockholm. Data are based on individual assessments made by the municipal need assessors for each decicison regarding the provision of eldercare services. Data include information about the type and amount of care and services granted, as well as information on need indicators (e.g., disability,physical function, cognitive impairment, mental health, living situation, housing). For specific research questions, data from the care system study can be complemented with register data on health care consumption provided by the Region of Stockholm (VAL-databas). The care system perspective and the population perspective are joined through those elderly persons who participate in both parts of the study.
Purpose:
Population study: The purpose is to study the transition from normal aging to morbidity and impaired functional ability by identify how social and biological factors, and the environment, affect older people's health, functional ability and life expectancy. The intention is to study the positive and negative events in life that may be relevant to aging.
Care system study: The aim of SNAC-K care system study is to continuously monitor the allocation of public eldercare in relation to need indicators. Collected data can be used as a basis for planning, resource allocation and evaluation of the provision of eldercare services and health care among older adults. Available data can also be used in research and development around the issues of the provision of social and heath care. The connection to the SNAC-K population study gives a unique opportunity for comparisons between care recipients and non-recipients.
At the baseline study, in 2001-2004, 1581 individuals aged 78 year or older participated. The population was followed up in 2004-2007 (992 participants), in 2007-2009 (662 participants), and in 2010-2012 (418 participants). Further follow-up is ongoing in 2013-2015.
For more information please visit: https://www.snac-k.se/for-researchers/data-description/ https://www.snac-k.se/for-researchers/code-books/
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Survey research can generate knowledge that is central to the study of collective action, public opinion, and political participation. Unfortunately, many populations—from undocumented migrants to right-wing activists and oligarchs—are hidden, lack sampling frames, or are otherwise hard to survey. An approach to hard-to-survey populations commonly taken by researchers in other disciplines is largely missing from the toolbox of political science methods: respondent-driven sampling (RDS). By leveraging relations of trust, RDS accesses hard-to-survey populations; it also promotes representativeness, systematizes data collection, and, notably, supports population inference. In approximating probability sampling, RDS makes strong assumptions. Yet if strengthened by integrative multi-method research, the method can shed light on otherwise concealed—and critical—political preferences and behaviors among many populations of interest. Through describing one of the first correct applications of RDS in political science, this paper provides empirically grounded guidance via a study of activist refugees from Syria. Refugees are prototypical hard-to-survey populations, and mobilized ones even more so; yet the study demonstrates that RDS can provide a systematic and representative account of a vulnerable population engaged in major political phenomena.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study is to examine the experiences of BEED students in new normal education with blended learning approaches Amidst Covid-19 Pandemic. To achieve this, quantitative-inferential and descriptive research method was adopted. This study focuses on the BEED students of College of Teacher Education at Sultan Kudarat State University. Total-enumeration sampling technique is utilized as it will be dealing with only 35 students, a total respondent which is less than 1000 research sample population. Research finding shows that new normal education implementation responded by BEED students shows that the topics delivered in modular learning approach cannot be easily understood solely by the students. Online learning using messenger chatting or texting with the teachers’ messages were sometimes confusing and limiting the meaning of the message(s) taught which in returns had limited as well the understanding of the students about the topic received. Virtual classes and topic discussions in an online classroom meeting ---most students were just connecting via Pesonet and that the internet connectivity is not consistent. Learning experiences of the students in the new normal education specifically in the answering of the students’ learning activities had been observed by the study as neither easy nor difficult. The availability of educational information technology devices for the online class communication are not similarly true to all due to economic deficiency. Thus, students find difficulties in attending classes. The internet connectivity of the student-teacher and their communication to receive updates about the class and in complying to the class requirements is very irregular and not consistent
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Glostrup Population Studies are population-based cohort studies performed in the western part of Greater Copenhagen, Denmark, since 1964. The studies are health examination studies with clinical and biochemical data and data from questionnaires and interviews. The 1914 cohort was aimed at investigating risk factors for coronary heart disease, but also included a psychological assessment and later ageing. The baseline study included participants born in 1914, thus aged 50 years at the time of the health examination in 1964. Repeated assessments were conducted at 10-year intervals from age 50 and every 5 years from age 70 to age 95 (in 2009). In 1984 and 1989, the cohort was expanded with new random samples of persons born in 1914.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NL: The Netherlands; SP: Spain; EDC: Expanded Diagnostic Cluster.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.
In this dataset:
We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.
Please cite this dataset as:
Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4
Organization of data
The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:
HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.
HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.
HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.
target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.
Column names
YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.
H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)
In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.
License Creative Commons Attribution 4.0 International.
Related datasets
Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612
Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564
Facebook
TwitterThe study included four separate surveys:
The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.
The LSMS survey of general population of Serbia in 2003 (panel survey)
The survey of Roma from Roma settlements in 2003 These two datasets are published together.
Objectives
LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.
The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).
Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]
Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.
The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).
Sample survey data [ssd]
Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.
The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.
The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.
Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.
Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.
Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.
The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.
Face-to-face [f2f]
In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).
During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.
In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households