Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. India data available from WorldPop here.
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook and Columbia University - CIESIN provide the High Resolution Settlement Layer as the world's most accurate population datasets. More info can be found here: https://dataforgood.fb.com/tools/population-density-maps/
These maps are the distribution of human population spanning Pakistan and India. Each of the 13 TIFF files is a 10 x 10 degree tile (the lower latitude coordinate and longitude coordinates are in the file name). A VRT file is also included.
This feature layers contain demographics about age, gender, education, employment, assets & amenities as reported by Office of the Registrar General & Census Commissioner, India in the Census 2011. These attributes cover topics such as male and female population counts by age, literacy, occupation, and household characteristics.Census of India counts every resident in India at village level. It is mandated by The Census Act 1948 of the Constitution and takes place every 10 years.Other demographics layers are also available:Country DemographicsState DemographicsDistrict DemographicsVillage DemographicsCombined DemographicsEach layer contains the same set of demographic attributes. Each geography level has a viewing range optimal for the geography size, and the map has increasing detail as you zoom in to smaller areas.Data source: Explore Census DataAdmin boundary source (country, states, and districts): Survey of India, 2020For more information: 2011 Census Demographic ProfileFor feedback please contact: content@esri.inData Processing notes:Country, State and District boundaries are simplified representations offered from the Survey of India database.Sub-districts and village boundaries are developed based on the census provided maps.Field names and aliases are processed by Esri India as created for the ArcGIS Platform.For a list of fields and alias names, access the following excel document.Disclaimer:The boundaries may not be perfectly align with AGOL imagery. The Census PDF maps are georeferenced using Survey of India boundaries and notice alignment issues with AGOL Imagery/ Maps. 33k villages are marked as point location on Census PDFs either because of low scale maps where small villages could not have been drawn or digitization has not been completed. These villages are marked as 100m circular polygons in the data.This web layer is offered by Esri India, for ArcGIS Online subscribers. If you have any questions or comments, please let us know
This feature layers contain demographics about age, gender, education, employment, assets & amenities as reported by Office of the Registrar General & Census Commissioner, India in the Census 2011. These attributes cover topics such as male and female population counts by age, literacy, occupation, and household characteristics.Census of India counts every resident in India at village level. It is mandated by The Census Act 1948 of the Constitution and takes place every 10 years.Other demographics layers are also available:Country DemographicsDistrict DemographicsSub-district DemographicsVillage DemographicsCombined DemographicsEach layer contains the same set of demographic attributes. Each geography level has a viewing range optimal for the geography size, and the map has increasing detail as you zoom in to smaller areas.Data source: Explore Census DataAdmin boundary source (country, states, and districts): Survey of India, 2020For more information: 2011 Census Demographic ProfileFor feedback please contact: content@esri.inData Processing notes:Country, State and District boundaries are simplified representations offered from the Survey of India database.Sub-districts and village boundaries are developed based on the census provided maps.Field names and aliases are processed by Esri India as created for the ArcGIS Platform.For a list of fields and alias names, access the following excel document.Disclaimer:The boundaries may not be perfectly align with AGOL imagery. The Census PDF maps are georeferenced using Survey of India boundaries and notice alignment issues with AGOL Imagery/ Maps. 33k villages are marked as point location on Census PDFs either because of low scale maps where small villages could not have been drawn or digitization has not been completed. These villages are marked as 100m circular polygons in the data.This web layer is offered by Esri India, for ArcGIS Online subscribers. If you have any questions or comments, please let us know via content@esri.in.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Indian Census Data with Geospatial indexing’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sirpunch/indian-census-data-with-geospatial-indexing on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Dataset Description:
Example Analysis:
The complete code for calculating the centroids and web scraping for the data is shared on GitHub.
The purpose of this project was to map population density center for each state.
You can also read about the complete project here: https://medium.com/@sumit.arora/plotting-weighted-mean-population-centroids-on-a-country-map-22da408c1397
Output Screenshots:
Indian districts mapped as polygons
https://i.imgur.com/UK1DCGW.png" alt="Indian districts mapped as polygons">
Mapping centroids for each district
https://i.imgur.com/KCAh7Jj.png" alt="Mapping centroids for each district">
Mean centers of population by state, 2001 vs. 2011
https://i.imgur.com/TLHPHjB.png" alt="Mean centers of population by state, 2001 vs. 2011">
National center of population
https://i.imgur.com/yYxE4Hc.png" alt="National center of population">
--- Original source retains full ownership of the source dataset ---
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. An overview of the data can be found in Tatem et al, and a description of the modelling methods used found in Stevens et al. The 'Global per country 2000-2020' datasets represent the outputs from a project focused on construction of consistent 100m resolution population count datasets for all countries of the World for each year 2000-2020. These efforts necessarily involved some shortcuts for consistency. The 'individual countries' datasets represent older efforts to map populations for each country separately, using a set of tailored geospatial inputs and differing methods and time periods. The 'whole continent' datasets are mosaics of the individual countries datasets
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
This feature layers contain demographics about age, gender, education, employment, assets & amenities as reported by Office of the Registrar General & Census Commissioner, India in the Census 2011. These attributes cover topics such as male and female population counts by age, literacy, occupation, and household characteristics.Census of India counts every resident in India at village level. It is mandated by The Census Act 1948 of the Constitution and takes place every 10 years.Other demographics layers are also available:Country DemographicsState DemographicsSub-district DemographicsVillage DemographicsCombined DemographicsEach layer contains the same set of demographic attributes. Each geography level has a viewing range optimal for the geography size, and the map has increasing detail as you zoom in to smaller areas.Data source: Explore Census DataAdmin boundary source (country, states, and districts): Survey of India, 2020For more information: 2011 Census Demographic ProfileFor feedback please contact: content@esri.inData Processing notes:Country, State and District boundaries are simplified representations offered from the Survey of India database.Sub-districts and village boundaries are developed based on the census provided maps.Field names and aliases are processed by Esri India as created for the ArcGIS Platform.For a list of fields and alias names, access the following excel document.Disclaimer:The boundaries may not be perfectly align with AGOL imagery. The Census PDF maps are georeferenced using Survey of India boundaries and notice alignment issues with AGOL Imagery/ Maps. 33k villages are marked as point location on Census PDFs either because of low scale maps where small villages could not have been drawn or digitization has not been completed. These villages are marked as 100m circular polygons in the data.This web layer is offered by Esri India, for ArcGIS Online subscribers. If you have any questions or comments, please let us know via content@esri.in.
In 2022, the union territory of Delhi had the highest urban population density of over ** thousand persons per square kilometer. While the rural population density was highest in union territory of Puducherry, followed by the state of Bihar.
DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM_popmap10adj_v2.tif = Vietnam (VNM) population count map for 2010 (popmap10) adjusted to match UN national estimates (adj), version 2 (v2). DATE OF PRODUCTION: January 2013
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1: Basic Information of India. Table S1. List of Indian States and Union Territories. Figure S1. Map of Indian States and Union Territories. Figure S2. Map of Indian population density. Figure S3. Averaged annual rainfall map of India (2013-2016). The red arrows are monsoon move directions during summer.
Population density in the Ghataprabha (K3) sub-basin area. The dataset, calculated as number of people per hectare, is derived from the WorldPop datasets (https://www.worldpop.org/)
GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent GIS data at 150m grids across Asia / MENA. Understand who lives in a catchment, where they work and their spending potential to make more informed decisions.
Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.
Population density in the Middle Krishna (K2) sub-basin area. The dataset, calculated as number of people per hectare, is derived from the WorldPop datasets (https://www.worldpop.org/)
Population density in the Malaprabha (K4) sub-basin area. The dataset, calculated as number of people per hectare, is derived from the WorldPop datasets (https://www.worldpop.org/)
This feature layers contain demographics about age, gender, education, employment, assets & amenities as reported by Office of the Registrar General & Census Commissioner, India in the Census 2011. These attributes cover topics such as male and female population counts by age, literacy, occupation, and household characteristics.Census of India counts every resident in India at village level. It is mandated by The Census Act 1948 of the Constitution and takes place every 10 years.Other demographics layers are also available:Country DemographicsState DemographicsDistrict DemographicsSub-district DemographicsCombined DemographicsEach layer contains the same set of demographic attributes. Each geography level has a viewing range optimal for the geography size, and the map has increasing detail as you zoom in to smaller areas.Data source: Explore Census DataAdmin boundary source (country, states, and districts): Survey of India, 2020For more information: 2011 Census Demographic ProfileFor feedback please contact: content@esri.inData Processing notes:Country, State and District boundaries are simplified representations offered from the Survey of India database.Sub-districts and village boundaries are developed based on the census provided maps.Field names and aliases are processed by Esri India as created for the ArcGIS Platform.For a list of fields and alias names, access the following excel document.Disclaimer:The boundaries may not be perfectly align with AGOL imagery. The Census PDF maps are georeferenced using Survey of India boundaries and notice alignment issues with AGOL Imagery/ Maps. 33k villages are marked as point location on Census PDFs either because of low scale maps where small villages could not have been drawn or digitization has not been completed. These villages are marked as 100m circular polygons in the data.This web layer is offered by Esri India, for ArcGIS Online subscribers. If you have any questions or comments, please let us know via content@esri.in.
Sourcing accurate and up-to-date demographics GIS data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.
GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent geodemographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.
With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:
Premium demographics GIS data for Asia and MENA includes the latest estimates (updated annually) on:
Primary Use Cases for GapMaps Demographics GIS Data:
Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.
Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)
Tenant Recruitment
Target Marketing
Market Potential / Gap Analysis
Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
Customer Profiling
Target Marketing
Market Share Analysis
In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Availability of emergency obstetric and newborn care (EmONC) is a strong supply side measure of essential health system capacity that is closely and causally linked to maternal mortality reduction and fundamentally to achieving universal health coverage. The World Health Organization’s indicator “Availability of EmONC facilities” was prioritized as a core indicator to prevent maternal death. The indicator focuses on whether there are sufficient emergency care facilities to meet the population need, but not all facilities designated as providing EmONC function as such. This study seeks to validate “Availability of EmONC” by comparing the value of the indicator after accounting for key aspects of facility functionality and an alternative measure of geographic distribution. This study takes place in four subnational geographic areas in Argentina, Ghana, and India using a census of all birthing facilities. Performance of EmONC in the 90 days prior to data collection was assessed by examining facility records. Data were collected on facility operating hours, staffing, and availability of essential medications. Population estimates were generated using ArcGIS software using WorldPop to estimate the total population, and the number of women of reproductive age (WRA), pregnancies and births in the study areas. In addition, we estimated the population within two-hours travel time of an EmONC facility by incorporating data on terrain from Open Street Map. Using these data sources, we calculated and compared the value of the indicator after incorporating data on facility performance and functionality while varying the reference population used. Further, we compared its value to the proportion of the population within two-hours travel time of an EmONC facility. Included in our study were 34 birthing facilities in Argentina, 51 in Ghana, and 282 in India. Facility performance of basic EmONC (BEmONC) and comprehensive EmONC (CEmONC) signal functions varied considerably. One facility (4.8%) in Ghana and no facility in India designated as BEmONC had performed all seven BEmONC signal functions. In Argentina, three (8.8%) CEmONC-designated facilities performed all nine CEmONC signal functions, all located in Buenos Aires Region V. Four CEmONC-designated facilities in Ghana (57.1%) and the three CEmONC-designated facilities in India (23.1%) evidenced full CEmONC performance. No sub-national study area in Argentina or India reached the target of 5 BEmONC-level facilities per 20,000 births after incorporating facility functionality yet 100% did in Argentina and 50% did in India when considering only facility designation. Demographic differences also accounted for important variation in the indicator’s value. In Ghana, the total population in Tolon within 2 hours travel time of a designated EmONC facility was estimated at 99.6%; however, only 91.1% of women of reproductive age were within 2 hours travel time. Comparing the value of the indicator when calculated using different definitions reveals important inconsistencies, resulting in conflicting information about whether the threshold for sufficient coverage is met. This raises important questions related to the indicator’s validity. To provide a valid measure of effective coverage of EmONC, the construct for measurement should extend beyond the most narrow definition of availability and account for functionality and geographic accessibility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. India data available from WorldPop here.