https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Level - 25-54 Yrs. (LNU00000060) from Jan 1948 to Aug 2025 about 25 to 54 years, civilian, household survey, population, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Level - Native Born (LNU00073413) from Jan 2007 to Aug 2025 about native born, civilian, population, and USA.
Age-Race-Sex population estimates for all California Local Health Jurisdictions and counties. Based on combining California Department of Finance projections with Census estimates to generate County and LHJ City (Berkeley, Long Beach, and Pasadena) data. Provides population data for calculation of rates, and to describe the demographic distribution of the population, for CDPH, other CalHHS departments, Local Health Jurisdictions, and other users
The 1993 Turkish Demographic and Health Survey (TDHS) is a nationally representative survey of ever-married women less than 50 years old. The survey was designed to provide information on fertility levels and trends, infant and child mortality, family planning, and maternal and child health. The TDHS was conducted by the Hacettepe University Institute of Population Studies under a subcontract through an agreement between the General Directorate of Mother and Child Health and Family Planning, Ministry of Health and Macro International Inc. of Calverton, Maryland. Fieldwork was conducted from August to October 1993. Interviews were carried out in 8,619 households and with 6,519 women.
The Turkish Demographic and Health Survey (TDHS) is a national sample survey of ever-married women of reproductive ages, designed to collect data on fertility, marriage patterns, family planning, early age mortality, socioeconomic characteristics, breastfeeding, immunisation of children, treatment of children during episodes of illness, and nutritional status of women and children. The TDHS, as part of the international DHS project, is also the latest survey in a series of national-level population and health surveys in Turkey, which have been conducted by the Institute of Population Studies, Haeettepe University (HIPS).
More specifically, the objectives of the TDHS are to:
Collect data at the national level that will allow the calculation of demographic rates, particularly fertility and childhood mortality rates; Analyse the direct and indirect factors that determine levels and trends in fertility and childhood mortality; Measure the level of contraceptive knowledge and practice by method, region, and urban- rural residence; Collect data on mother and child health, including immunisations, prevalence and treatment of diarrhoea, acute respiratory infections among children under five, antenatal care, assistance at delivery, and breastfeeding; Measure the nutritional status of children under five and of their mothers using anthropometric measurements.
The TDHS information is intended to assist policy makers and administrators in evaluating existing programs and in designing new strategies for improving family planning and health services in Turkey.
MAIN RESULTS
Fertility in Turkey is continuing to decline. If Turkish women maintain current fertility rates during their reproductive years, they can expect to have all average of 2.7 children by the end of their reproductive years. The highest fertility rate is observed for the age group 20-24. There are marked regional differences in fertility rates, ranging from 4.4 children per woman in the East to 2.0 children per woman in the West. Fertility also varies widely by urban-rural residence and by education level. A woman living in rural areas will have almost one child more than a woman living in an urban area. Women who have no education have almost one child more than women who have a primary-level education and 2.5 children more than women with secondary-level education.
The first requirement of success ill family planning is the knowledge of family planning methods. Knowledge of any method is almost universal among Turkish women and almost all those who know a method also know the source of the method. Eighty percent of currently married women have used a method sometime in their life. One third of currently married women report ever using the IUD. Overall, 63 percent of currently married women are currently using a method. The majority of these women are modern method users (35 percent), but a very substantial proportion use traditional methods (28 percent). the IUD is the most commonly used modern method (I 9 percent), allowed by the condom (7 percent) and the pill (5 percent). Regional differences are substantial. The level of current use is 42 percent in tile East, 72 percent in tile West and more than 60 percent in tile other three regions. "File common complaints about tile methods are side effects and health concerns; these are especially prevalent for the pill and IUD.
One of the major child health indicators is immunisation coverage. Among children age 12-23 months, the coverage rates for BCG and the first two doses of DPT and polio were about 90 percent, with most of the children receiving those vaccines before age one. The results indicate that 65 percent of the children had received all vaccinations at some time before the survey. On a regional basis, coverage is significantly lower in the Eastern region (41 percent), followed by the Northern and Central regions (61 percent and 65 percent, respectively). Acute respiratory infections (ARI) and diarrhea are the two most prevalent diseases of children under age five in Turkey. In the two weeks preceding the survey, the prevalence of ARI was 12 percent and the prevalence of diarrhea was 25 percent for children under age five. Among children with diarrhea 56 percent were given more fluids than usual.
Breastfeeding in Turkey is widespread. Almost all Turkish children (95 percent) are breastfed for some period of time. The median duration of breastfeeding is 12 months, but supplementary foods and liquids are introduced at an early age. One-third of children are being given supplementary food as early as one month of age and by the age of 2-3 months, half of the children are already being given supplementary foods or liquids.
By age five, almost one-filth of children arc stunted (short for their age), compared to an international reference population. Stunting is more prevalent in rural areas, in the East, among children of mothers with little or no education, among children who are of higher birth order, and among those born less than 24 months after a prior birth. Overall, wasting is not a problem. Two percent of children are wasted (thin for their height), and I I percent of children under five are underweight for their age. The survey results show that obesity is d problem among mothers. According to Body Mass Index (BMI) calculations, 51 percent of mothers are overweight, of which 19 percent are obese.
The Turkish Demographic and Health Survey (TDHS) is a national sample survey.
The population covered by the 1993 DHS is defined as the universe of all ever-married women age 12-49 who were present in the household on the night before the interview were eligible for the survey.
Sample survey data
The sample for the TDHS was designed to provide estimates of population and health indicators, including fertility and mortality rates for the nation as a whole, fOr urban and rural areas, and for the five major regions of the country. A weighted, multistage, stratified cluster sampling approach was used in the selection of the TDHS sample.
Sample selection was undertaken in three stages. The sampling units at the first stage were settlements that differed in population size. The frame for the selection of the primary sampling units (PSUs) was prepared using the results of the 1990 Population Census. The urban frame included provinces and district centres and settlements with populations of more than 10,000; the rural frame included subdistricts and villages with populations of less than 10,000. Adjustments were made to consider the growth in some areas right up to survey time. In addition to the rural-urban and regional stratifications, settlements were classified in seven groups according to population size.
The second stage of selection involved the list of quarters (administrative divisions of varying size) for each urban settlement, provided by the State Institute of Statistics (SIS). Every selected quarter was subdivided according tothe number of divisions(approximately 100 households)assigned to it. In rural areas, a selected village was taken as a single quarter, and wherever necessary, it was divided into subdivisions of approximately 100 households. In cases where the number of households in a selected village was less than 100 households, the nearest village was selected to complete the 100 households during the listing activity, which is described below.
After the selection of the secondary sampling units (SSUs), a household listing was obtained for each by the TDHS listing teams. The listing activity was carried out in May and June. From the household lists, a systematic random sample of households was chosen for the TDHS. All ever-married women age 12-49 who were present in the household on the night before the interview were eligible for the survey.
Face-to-face
Two questionnaires were used in the main fieldwork for the TDHS: the Household Questionnaire and the Individual Questionnaire for ever-married women of reproductive age. The questionnaires were based on the model survey instruments developed in the DHS program and on the questionnaires that had been employed in previous Turkish population and health surveys. The questionnaires were adapted to obtain data needed for program planning in Turkey during consultations with population and health agencies. Both questionnaires were developed in English and translated into Turkish.
a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, marital status and relationship to the head of household for each person listed as a household member
The purpose of this study is to investigate how survey respondents classify and rank different data points in different public health data streams. Survey respondents are shown two interactive html files with 5 streams each and are asked first to classify the one highlighted point in each stream as concerning or not concerning. They then rank points that they found concerning.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - Population Level - Men was 133651.00000 Thous. of Persons in August of 2025, according to the United States Federal Reserve. Historically, United States - Population Level - Men reached a record high of 133651.00000 in August of 2025 and a record low of 49520.00000 in March of 1952. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Population Level - Men - last updated from the United States Federal Reserve on September of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - Population Level - Women was 140350.00000 Thous. of Persons in August of 2025, according to the United States Federal Reserve. Historically, United States - Population Level - Women reached a record high of 140350.00000 in August of 2025 and a record low of 52782.00000 in January of 1948. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Population Level - Women - last updated from the United States Federal Reserve on October of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - Population Level - White was 207675.00000 Thous. of Persons in August of 2025, according to the United States Federal Reserve. Historically, United States - Population Level - White reached a record high of 207675.00000 in August of 2025 and a record low of 97251.00000 in January of 1954. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Population Level - White - last updated from the United States Federal Reserve on October of 2025.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Level - Foreign Born, Women (LNU00073397) from Jan 2007 to Aug 2025 about foreign, females, civilian, population, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - Population Level - Native Born, Men was 110115.00000 Thous. of Persons in August of 2025, according to the United States Federal Reserve. Historically, United States - Population Level - Native Born, Men reached a record high of 110115.00000 in August of 2025 and a record low of 94094.00000 in February of 2007. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Population Level - Native Born, Men - last updated from the United States Federal Reserve on September of 2025.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
We used this dataset to assess the strength of isolation due to geographic and macroclimatic distance across island and mainland systems, comparing published measurements of phenotypic traits and neutral genetic diversity for populations of plants and animals worldwide. The dataset includes 112 studies of 108 species (72 animals and 36 plants) in 868 island populations and 760 mainland populations, with population-level taxonomic and biogeographic information, totalling 7438 records. Methods Description of methods used for collection/generation of data: We searched the ISI Web of Science in March 2017 for comparative studies that included data on phenotypic traits and/or neutral genetic diversity of populations on true islands and on mainland sites in any taxonomic group. Search terms were 'island' and ('mainland' or 'continental') and 'population*' and ('demograph*' or 'fitness' or 'survival' or 'growth' or 'reproduc*' or 'density' or 'abundance' or 'size' or 'genetic diversity' or 'genetic structure' or 'population genetics') and ('plant*' or 'tree*' or 'shrub*or 'animal*' or 'bird*' or 'amphibian*' or 'mammal*' or 'reptile*' or 'lizard*' or 'snake*' or 'fish'), subsequently refined to the Web of Science categories 'Ecology' or 'Evolutionary Biology' or 'Zoology' or 'Genetics Heredity' or 'Biodiversity Conservation' or 'Marine Freshwater Biology' or 'Plant Sciences' or 'Geography Physical' or 'Ornithology' or 'Biochemistry Molecular Biology' or 'Multidisciplinary Sciences' or 'Environmental Sciences' or 'Fisheries' or 'Oceanography' or 'Biology' or 'Forestry' or 'Reproductive Biology' or 'Behavioral Sciences'. The search included the whole text including abstract and title, but only abstracts and titles were searchable for older papers depending on the journal. The search returned 1237 papers which were distributed among coauthors for further scrutiny. First paper filter To be useful, the papers must have met the following criteria: Overall study design criteria: Include at least two separate islands and two mainland populations; Eliminate studies comparing populations on several islands where there were no clear mainland vs. island comparisons; Present primary research data (e.g., meta-analyses were discarded); Include a field study (e.g., experimental studies and ex situ populations were discarded); Can include data from sub-populations pooled within an island or within a mainland population (but not between islands or between mainland sites); Island criteria: Island populations situated on separate islands (papers where all information on island populations originated from a single island were discarded); Can include multiple populations recorded on the same island, if there is more than one island in the study; While we accepted the authors' judgement about island vs. mainland status, in 19 papers we made our own judgement based on the relative size of the island or position relative to the mainland (e.g. Honshu Island of Japan, sized 227 960 km² was interpreted as mainland relative to islands less than 91 km²); Include islands surrounded by sea water but not islands in a lake or big river; Include islands regardless of origin (continental shelf, volcanic); Taxonomic criteria: Include any taxonomic group; The paper must compare populations within a single species; Do not include marine species (including coastline organisms); Databases used to check species delimitation: Handbook of Birds of the World (www.hbw.com/); International Plant Names Index (https://www.ipni.org/); Plants of the World Online(https://powo.science.kew.org/); Handbook of the Mammals of the World; Global Biodiversity Information Facility (https://www.gbif.org/); Biogeographic criteria: Include all continents, as well as studies on multiple continents; Do not include papers regarding migratory species; Only include old / historical invasions to islands (>50 yrs); do not include recent invasions; Response criteria: Do not include studies which report community-level responses such as species richness; Include genetic diversity measures and/or individual and population-level phenotypic trait responses; The first paper filter resulted in 235 papers which were randomly reassigned for a second round of filtering. Second paper filter In the second filter, we excluded papers that did not provide population geographic coordinates and population-level quantitative data, unless data were provided upon contacting the authors or could be obtained from figures using DataThief (Tummers 2006). We visually inspected maps plotted for each study separately and we made minor adjustments to the GPS coordinates when the coordinates placed the focal population off the island or mainland. For this study, we included only responses measured at the individual level, therefore we removed papers referring to demographic performance and traits such as immunity, behaviour and diet that are heavily reliant on ecosystem context. We extracted data on population-level mean for two broad categories of response: i) broad phenotypic measures, which included traits (size, weight and morphology of entire body or body parts), metabolism products, physiology, vital rates (growth, survival, reproduction) and mean age of sampled mature individuals; and ii) genetic diversity, which included heterozygosity,allelic richness, number of alleles per locus etc. The final dataset includes 112 studies and 108 species. Methods for processing the data: We made minor adjustments to the GPS location of some populations upon visual inspection on Google Maps of the correct overlay of the data point with the indicated island body or mainland. For each population we extracted four climate variables reflecting mean and variation in temperature and precipitation available in CliMond V1.2 (Kritikos et al. 2012) at 10 minutes resolution: mean annual temperature (Bio1), annual precipitation (Bio12), temperature seasonality (CV) (Bio4) and precipitation seasonality (CV) (Bio15) using the "prcomp function" in the stats package in R. For populations where climate variables were not available on the global climate maps mostly due to small island size not captured in CliMond, we extracted data from the geographically closest grid cell with available climate values, which was available within 3.5 km away from the focal grid cell for all localities. We normalised the four climate variables using the "normalizer" package in R (Vilela 2020), and we performed a Principal Component Analysis (PCA) using the psych package in R (Revelle 2018). We saved the loadings of the axes for further analyses. References:
Bruno Vilela (2020). normalizer: Making data normal again.. R package version 0.1.0. Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J., et al.(2012). CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol., 3, 53--64. Revelle, W. (2018) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA, https://CRAN.R-project.org/package=psych Version = 1.8.12. Tummers, B. (2006). DataThief III. https://datathief.org/
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Thematic maps of the population in Rhineland-Palatinate at district, association and community level at the end of the year. The data are taken from the population update statistics based on the 2011 census.:Population as at 31.12.2022. Population density, community level
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the state of California from 1900 to 2024.
The China County-Level Data on Population (Census) and Agriculture, Keyed To 1:1M GIS Map consists of census, agricultural economic, and boundary data for the administrative regions of China for 1990. The census data includes urban and rural residency, age and sex distribution, educational attainment, illiteracy, marital status, childbirth, mortality, immigration (since 1985), industrial/economic activity, occupation, and ethnicity. The agricultural economic data encompasses rural population, labor force, forestry, livestock and fishery, commodities, equipment, utilities, irrigation, and output value. The boundary data are at a scale of one to one million (1:1M) at the county level. This data set is produced in collaboration with the University of Washington as part of the China in Time and Space (CITAS) project, University of California-Davis China in Time and Space (CITAS) project, and the Center for International Earth Science Information Network (CIESIN).
This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by ZIP Code Tabulation Area (ZCTA) neighborhood poverty group. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-poverty.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Neighborhood-level poverty groups were classified in a manner consistent with Health Department practices to describe and monitor disparities in health in NYC. Neighborhood poverty measures are defined as the percentage of people earning below the Federal Poverty Threshold (FPT) within a ZCTA. The standard cut-points for defining categories of neighborhood-level poverty in NYC are: • Low: <10% of residents in ZCTA living below the FPT • Medium: 10% to <20% • High: 20% to <30% • Very high: ≥30% residents living below the FPT The ZCTAs used for classification reflect the first non-missing address within NYC for each person reported with an antibody test result. Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Rates for poverty were calculated using direct standardization for age at diagnosis and weighting by the US 2000 standard population. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certain
This shows the number of vehicles that were registered by Washington State Department of Licensing (DOL) each month. The data is separated by county for passenger vehicles and trucks. DOL integrates National Highway Traffic Safety Administration (NHTSA) data and the Environmental Protection Agency (EPA) fuel efficiency ratings with DOL titling and registration data to create this information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - Population Level - Nonveterans, 18 Years and over was 247438.00000 Thous. of Persons in August of 2025, according to the United States Federal Reserve. Historically, United States - Population Level - Nonveterans, 18 Years and over reached a record high of 247438.00000 in August of 2025 and a record low of 178385.00000 in January of 2000. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Population Level - Nonveterans, 18 Years and over - last updated from the United States Federal Reserve on September of 2025.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Aim: It has been hypothesized that niche-breadth should decrease with richness, due to interactions such as competition, forcing species to specialize. This hypothesis has been tested at the community-level using species-level niche breadth estimates. However, evidence for changes in niche-breath among populations of the same species are scant. Examining this relationship among populations is crucial for understanding the role of interactions, as opposed to large-scale climate, in altering realized niche breadth. Location: The Pacific Ocean Time period: 1996-2010 Methods: We focus on reef fishes along a large-scale richness gradient that is not accompanied by marked environmental changes. Fishes in each site were surveyed in four distinct habitats which allow to estimate the habitat-breadth for each population. We calculated the habitat-breadth of distinct populations of 154 fish species and tested how habitat-breadth varied with richness, while controlling for the effect of abundance. We further tested the effect of traits and trait-distinctiveness on the richness-sensitivity of habitat-breadth. Results: Habitat-breadth varied with species traits, as large and mobile species were found to be habitat generalists while schooling species habitat specialists. Importantly, habitat-breadth was negatively correlated to richness for 109 out of the 154 species, and, across all species, the relationship was highly significant. As expected from competition being the major driver, we found that species with distinct traits displayed a wider habitat breadth, but that the relationship was sensitive to the type of trait-distinctiveness index used. Conclusions: This is the first large-scale evidence that population-level habitat-breadth changes with richness. Results suggest that the realized niche is population specific, and that niche-breadth is reduced by local interactions such as competition. This implies that populations, specifically in rich areas, are far from using their entire fundamental niche. Therefore, the ability to predict habitat preferences in response to global change based on current habitat associations, but without accounting for species interactions, may be limited. Methods Underwater visual fish census survey data collected by Michel Kulbicki and Laurent Vigliola. Data columns are very informative. 'Density' refers to the number of individuals per 100 squared meters.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These population projections were prepared by the Australian Bureau of Statistics (ABS) for Geoscience Australia. The projections are not official ABS data and are owned by Geoscience Australia.These projections are for Statistical Areas Level 2 (SA2s) and Local Government Areas (LGAs), and are projected out from a base population as at 30 June 2022, by age and sex. Projections are for 30 June 2023 to 2032, with results disaggregated by age and sex.Method The cohort-component method was used for these projections. In this method, the base population is projected forward annually by calculating the effect of births, deaths and migration (the components) within each age-sex cohort according to the specified fertility, mortality and overseas and internal migration assumptions.The projected usual resident population by single year of age and sex was produced in four successive stages – national, state/territory, capital city/rest of state, and finally SA2s. Assumptions were made for each level and the resulting projected components and population are constrained to the geographic level above for each year.These projections were derived from a combination of assumptions published in Population Projections, Australia, 2022 (base) to 2071 on 23 November 2023, and historical patterns observed within each state/territory.Projections – capital city/rest of state regions The base population is 30 June 2022 Estimated Resident Population (ERP) as published in National, state and territory population, June 2022.For fertility, the total fertility rate (at the national level) is based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, of 1.6 babies per woman being phased in from 2022 levels over five years to 2027, before remaining steady for the remainder of the projection span. Observed state/territory, and greater capital city level fertility differentials were applied to the national data so that established trends in the state and capital city/rest of state relativities were preserved.Mortality rates are based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, and assume that mortality rates will continue to decline across Australia with state/territory differentials persisting. State/territory and capital city/rest of state differentials were used to ensure projected deaths are consistent with the historical trend.Annual net overseas migration (NOM) is based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, with an assumed gain (at the national level) of 400,000 in 2022-23, increasing to 315,000 in 2023-24, then declining to 225,000 in 2026-27, after which NOM is assumed to remain constant. State and capital city/rest of state shares are based on a weighted average of NOM data from 2010 to 2019 at the state and territory level to account for the impact of COVID-19.For internal migration, net gains and losses from states and territories and capital city/rest of state regions are based on the medium assumption used in Population Projections, Australia, 2022 (base) to 2071, and assume that net interstate migration will trend towards long-term historic average flows.Projections – Statistical Areas Level 2The base population for each SA2 is the estimated resident population in each area by single year of age and sex, at 30 June 2022, as published in Regional population by age and sex, 2022 on 28 September 2023.The SA2-level fertility and mortality assumptions were derived by combining the medium scenario state/territory assumptions from Population Projections, Australia, 2022 (base) to 2071, with recent fertility and mortality trends in each SA2 based on annual births (by sex) and deaths (by age and sex) published in Regional Population, 2021-22 and Regional Population by Age and Sex, 2022.Assumed overseas and internal migration for each SA2 is based on SA2-specific annual overseas and internal arrivals and departures estimates published in Regional Population, 2021-22 and Regional Population by Age and Sex, 2022. The internal migration data was strengthened with SA2-specific data from the 2021 Census, based on the usual residence one year before Census night question. Assumptions were applied by SA2, age and sex.Assumptions were adjusted for some SA2s, to provide more plausible future population levels, and age and sex distribution changes, including areas where populations may not age over time, for example due to significant resident student and defence force populations. Most assumption adjustments were made via the internal migration component. For some SA2s with zero or a very small population base, but where significant population growth is expected, replacement migration age/sex profiles were applied.All SA2-level components and projected projections are constrained to the medium series of capital city/rest of state data in Population Projections, Australia, 2022 (base) to 2071.Projections – Local Government AreasThe base population for each LGA is the estimated resident population in each area by single year of age and sex, at 30 June 2022, as published in Regional population by age and sex, 2022 on 28 September 2023.Projections for 30 June 2023 to 2032 were created by converting from the SA2-level population projections to LGAs by age and sex. This was done using an age-specific population correspondence, where the data for each year of the projection span were converted based on 2021 population shares across SA2s. The LGA and SA2 projections are congruous in aggregation as well as in isolation.Unlike the projections prepared at SA2 level, no LGA-specific projection assumptions were used.Nature of projections and considerations for usageThe nature of the projection method and inherent fluctuations in population dynamics mean that care should be taken when using and interpreting the projection results. The projections are not forecasts, but rather illustrate future changes which would occur if the stated assumptions were to apply over the projection period.These projections do not attempt to allow for non-demographic factors such as major government policy decisions, economic factors, catastrophes, wars and pandemics, which may affect future demographic behaviour.To illustrate a range of possible outcomes, alternative projection series for national, state/territory and capital city/rest of state areas, using different combinations of fertility, mortality, overseas and internal migration assumptions, are prepared. Alternative series are published in Population Projections, Australia, 2022 (base) to 2071. Only one series of SA2-level projections was prepared for this product.Population projections can take account of planning and other decisions by governments known at the time the projections were derived, including sub-state projections published by each state and territory government. The ABS generally does not have access to the policies or decisions of commonwealth, state and local governments and businesses that assist in accurately forecasting small area populations.Migration, especially internal migration, accounts for the majority of projected population change for most SA2s. Volatile and unpredictable small area migration trends, especially in the short-term, can have a significant effect on longer-term projection results. Care therefore should be taken with SA2s with small total populations and very small age-sex cells, especially at older ages.While these projections are calculated at the single year of age level, small numbers, and fluctuations across individual ages in the base population and projection assumptions limit the reliability of SA2-level projections at single year of age level. These fluctuations reduce and reliability improves when the projection results are aggregated to broader age groups such as the five-year age bands in this product. For areas with small elderly populations, results aggregated to 65 and over are more reliable than for the individual age groups above 65.With the exception of areas with high planned population growth, SA2s with a base total population of less than 500 have generally been held constant for the projection period in this product as their populations are too small to be reliably projected at all, however their (small) age/sex distributions may change slightly. These SA2s are listed in the appendix.The base (2022) SA2 population estimates and post-2022 projections by age and sex include small artificial cells, including 1s and 2s. These are the result of a confidentialisation process and forced additivity, to control SA2 and capital city/rest of state age/sex totals, being applied to their original values.SA2s and LGAs in this product are based on the Australian Statistical Geography Standard (ASGS) boundaries as at the 2021 Census (ASGS Edition 3). For further information, see Australian Statistical Geography Standard (ASGS) Edition 3. Made possible by the Digital Atlas of Australia The Digital Atlas of Australia is a key Australian Government initiative being led by Geoscience Australia, highlighted in the Data and Digital Government Strategy. It brings together trusted datasets from across government in an interactive, secure, and easy-to-use geospatial platform. The Australian Bureau of Statistics (ABS) is working in partnership with Geoscience Australia to establish a set of web services to make ABS data available in the Digital Atlas of Australia.Contact the Australian Bureau of Statistics If you have questions or feedback about this web service, please email geography@abs.gov.au. To subscribe to updates about ABS web services and geospatial products, please complete this form. For information about how the ABS manages any personal information you provide view the ABS privacy policy.Data and geography references Source data publication: Population Projections, Australia, 2022 (base) to 2071 Geographic boundary information:
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Effective conservation and management of animal populations requires knowledge of abundance and trends. For many species, these quantities are estimated using systematic visual surveys. Additional individual-level data are available for some species. Integrated population modelling (IPM) offers a mechanism for leveraging these datasets into a single estimation framework. IPMs that incorporate both population- and individual-level data have previously been developed for birds, but have rarely been applied to cetaceans. Here, we explore how IPMs can be used to improve the assessment of cetacean populations. We combined three types of data that are typically available for cetaceans of conservation concern: population-level visual survey data, individual-level capture-recapture data, and data on anthropogenic mortality. We used this IPM to estimate the population dynamics of the Cook Inlet population of beluga whales (CIBW; Delphinapterus leucas) as a case study. Our state-space IPM included a population process model and three observational submodels: 1) a group detection model to describe group size estimates from aerial survey data; 2) a capture-recapture model to describe individual photographic capture-recapture data; and 3) a Poisson regression model to describe historical hunting data. The IPM produces biologically plausible estimates of population trajectories consistent with all three datasets. The estimated population growth rate since 2000 is less than expected for a recovering population. The estimated juvenile/adult survival rate is also low compared to other cetacean populations, indicating that low survival may be impeding recovery. This work demonstrates the value of integrating various data sources to assess cetacean populations and serves as an example of how multiple, imperfect datasets can be combined to improve our understanding of a population of interest. The model framework is applicable to other cetacean populations and to other taxa for which similar data types are available.
Methods /Data/CIBW_RSideCapHist_McGuire&Stephens.csv contains a matrix of right side capture histories (1 = captured, 0 = not captured) for each individual (rows) and year (columns). Photographic capture-recapture data were collected by Tamara McGuire. These data are made available here, without restriction, but anyone wishing to use these data is requested to contact tamaracookinletbeluga@gmail.com, who can provide further information on how raw data were processed to provide capture histories.
/Data/CIBW_HuntData_Mahoney&Shelden2000.xlsx contains the minimum documented number of animals killed (MinKilled) for years between 1950 and 1998 as published in Mahoney and Shelden 2000. Entries which are NA indicate that no data were available for that year.
/Data/CIBW_Abundance_HobbsEtAl2015.xlsx contains the total group size estimates from Hobbs et al. 2015.
/Data/CIBW_Abundance_BoydEtAl2019.txt contains an array with dimensions [1:1000, 1:8, 1:11] containing 1000 posterior samples of total group size for up to 8 survey days over 11 years, as described in Boyd et al. 2019.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Level - 25-54 Yrs. (LNU00000060) from Jan 1948 to Aug 2025 about 25 to 54 years, civilian, household survey, population, and USA.