52 datasets found
  1. f

    High Resolution Population Distribution Maps for Southeast Asia in 2010 and...

    • plos.figshare.com
    tiff
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea E. Gaughan; Forrest R. Stevens; Catherine Linard; Peng Jia; Andrew J. Tatem (2023). High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015 [Dataset]. http://doi.org/10.1371/journal.pone.0055882
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Andrea E. Gaughan; Forrest R. Stevens; Catherine Linard; Peng Jia; Andrew J. Tatem
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South East Asia, Asia
    Description

    Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org.

  2. Distribution of the global population by continent 2024

    • statista.com
    • ai-chatbox.pro
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of the global population by continent 2024 [Dataset]. https://www.statista.com/statistics/237584/distribution-of-the-world-population-by-continent/
    Explore at:
    Dataset updated
    Mar 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.

  3. 10 powerful tools and maps with which to teach about population and...

    • library.ncge.org
    Updated Jul 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). 10 powerful tools and maps with which to teach about population and demographics [Dataset]. https://library.ncge.org/documents/bae1d5f1cba243ea88d09b043b8444ee
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).

  4. d

    Premium GIS Data | Asia/ MENA | Latest Estimates on Population, Consuming...

    • datarade.ai
    .json, .csv
    Updated Nov 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). Premium GIS Data | Asia/ MENA | Latest Estimates on Population, Consuming Class, Retail Spend, Demographics | Map Data | Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-premium-demographics-gis-data-asia-mena-150m-x-1-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Nov 23, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Malaysia, Singapore, Saudi Arabia, India, Philippines, Indonesia, Asia
    Description

    Sourcing accurate and up-to-date demographics GIS data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.

    GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent geodemographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.

    With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:

    • Better understand your customers
    • Identify optimal locations to expand your retail footprint
    • Define sales territories for franchisees
    • Run targeted marketing campaigns.

    Premium demographics GIS data for Asia and MENA includes the latest estimates (updated annually) on:

    1. Population (how many people live in your local catchment)
    2. Demographics (who lives within your local catchment)
    3. Worker population (how many people work within your local catchment)
    4. Consuming Class and Premium Consuming Class (who can can afford to buy goods & services beyond their basic needs and /or shop at premium retailers)
    5. Retail Spending (Food & Beverage, Grocery, Apparel, Other). How much are consumers spending on retail goods and services by category.

    Primary Use Cases for GapMaps Demographics GIS Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular 150m x 150m grid levels using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    8. Tenant Recruitment

    9. Target Marketing

    10. Market Potential / Gap Analysis

    11. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    12. Customer Profiling

    13. Target Marketing

    14. Market Share Analysis

  5. g

    Geodemographic Data | Asia/ MENA | Latest Estimates on Population, Consuming...

    • datastore.gapmaps.com
    Updated Nov 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). Geodemographic Data | Asia/ MENA | Latest Estimates on Population, Consuming Class, Demographics, Retail Spend | GIS Data | Map Data [Dataset]. https://datastore.gapmaps.com/products/gapmaps-premium-geodemographic-data-asia-mena-150m-x-150-gapmaps
    Explore at:
    Dataset updated
    Nov 20, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Philippines, Indonesia, India, Saudi Arabia, Singapore, Malaysia, Asia
    Description

    GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent geodemographic data at 150m grids across Asia and MENA. Understand who lives in a catchment, where they work and their spending potential.

  6. d

    Map Data | Asia & MENA | Premium Demographics & Point-of-Interest Data To...

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps, Map Data | Asia & MENA | Premium Demographics & Point-of-Interest Data To Optimise Business Decisions | GIS Data | Demographic Data [Dataset]. https://datarade.ai/data-products/gapmaps-global-map-data-asia-mena-150m-x-150m-grids-cu-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    GapMaps
    Area covered
    Indonesia, Malaysia, India, Philippines, Saudi Arabia, Singapore, Asia
    Description

    Sourcing accurate and up-to-date map data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.

    GapMaps Map Data uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent demographics data across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.

    GapMaps Map Data also includes the latest Point-of-Interest (POI) Data for leading retail brands across a range of categories including Fast Food/ QSR, Health & Fitness, Supermarket/Grocery and Cafe sectors which is updated monthly.

    With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:

    • Better understand your customers
    • Identify optimal locations to expand your retail footprint
    • Define sales territories for franchisees
    • Run targeted marketing campaigns.

    GapMaps Map Data for Asia and MENA can be utilized in any GIS platform and includes the latest estimates (updated annually) on:

    1. Population (how many people live in your local catchment)
    2. Demographics (who lives within your local catchment)
    3. Worker population (how many people work within your local catchment)
    4. Consuming Class and Premium Consuming Class (who can can afford to buy goods & services beyond their basic needs and /or shop at premium retailers)
    5. Retail Spending (Food & Beverage, Grocery, Apparel, Other). How much are consumers spending on retail goods and services by category.

    Primary Use Cases for GapMaps Map Data:

    1. Retail Site Selection - identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular 150m x 150m grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.
    6. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    7. Customer Profiling
    8. Target Marketing
    9. Market Share Analysis
  7. s

    Mongolia 100m Urban change

    • eprints.soton.ac.uk
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop, (2023). Mongolia 100m Urban change [Dataset]. http://doi.org/10.5258/SOTON/WP00173
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    Mongolia
    Description

    DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882

  8. a

    2010 Asian Population in the USA

    • hub.arcgis.com
    • gis-for-racialequity.hub.arcgis.com
    Updated Jun 14, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2017). 2010 Asian Population in the USA [Dataset]. https://hub.arcgis.com/maps/f8492c0778fb44beaafc499b1f88196b
    Explore at:
    Dataset updated
    Jun 14, 2017
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map shows the percentage of the population in the USA that classify themselves as Asian according to the 2010 Census. The map shows this pattern for states, counties, tracts, and block groups. There is increasing geographic detail as you zoom in, and only one geography is configured to show at any time. The data source is the US Census Bureau, and the vintage is 2010. The original service and data metadata can be found here.Additional Census 2010 resources

  9. c

    Central Asia and Caucasus Demographics

    • cacgeoportal.com
    Updated Apr 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Central Asia and Caucasus Demographics [Dataset]. https://www.cacgeoportal.com/datasets/central-asia-and-caucasus-demographics
    Explore at:
    Dataset updated
    Apr 11, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Central Asia, Caucasus
    Description

    Central Asia and Caucasus countries included Uzbekistan, Kazakhstan, the Kyrgyz Republic, Tajikistan and Turkmenistan, Azerbaijan, Armenia and Georgia.This app displays examples of countries within the region based on the 2022 boundaries, along with demographic data. You can click on open map and explore maps and demographic attributes by clicking on the map to see the pop-up. Each map has been enriched with demographic attributes using data enrichment tools in ArcGIS Online. The 2022 boundaries and attributes are provided by Michael Bauer Research GmbH.

  10. Global population 1800-2100, by continent

    • statista.com
    • ai-chatbox.pro
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  11. c

    Central Asia and Caucasus Countries Demographics

    • cacgeoportal.com
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Central Asia and Caucasus Countries Demographics [Dataset]. https://www.cacgeoportal.com/datasets/central-asia-and-caucasus-countries-demographics
    Explore at:
    Dataset updated
    May 29, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Caucasus, Central Asia
    Description

    Central Asia and Caucasus countries included Uzbekistan, Kazakhstan, the Kyrgyz Republic, Tajikistan and Turkmenistan, Azerbaijan, Armenia and Georgia.This app displays examples of countries within the region based on the 2022 boundaries, along with demographic data. You can click on open map and explore maps and demographic attributes by clicking on the map to see the pop-up. Each map has been enriched with demographic attributes using data enrichment tools in ArcGIS Online. The 2022 boundaries and attributes are provided by Michael Bauer Research GmbH.

  12. s

    Taiwan 100m Urban change

    • eprints.soton.ac.uk
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop, (2023). Taiwan 100m Urban change [Dataset]. http://doi.org/10.5258/SOTON/WP00263
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    Taiwan
    Description

    DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882

  13. s

    Democratic People's Republic of Korea 100m Urban change

    • eprints.soton.ac.uk
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop, (2023). Democratic People's Republic of Korea 100m Urban change [Dataset]. http://doi.org/10.5258/SOTON/WP00070
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    North Korea
    Description

    DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882

  14. s

    Timor-Leste 100m Urban change

    • eprints.soton.ac.uk
    Updated May 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop, (2023). Timor-Leste 100m Urban change [Dataset]. http://doi.org/10.5258/SOTON/WP00272
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    Timor-Leste
    Description

    DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882

  15. g

    Map Data | Asia & MENA | Premium Demographics & Point-of-Interest Data To...

    • datastore.gapmaps.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps, Map Data | Asia & MENA | Premium Demographics & Point-of-Interest Data To Optimise Business Decisions | GIS Data | Demographic Data [Dataset]. https://datastore.gapmaps.com/products/gapmaps-global-map-data-asia-mena-150m-x-150m-grids-cu-gapmaps
    Explore at:
    Dataset authored and provided by
    GapMaps
    Area covered
    Saudi Arabia, India, Singapore, Malaysia, Philippines, Indonesia, Asia
    Description

    GapMaps uses known population data combined with billions of mobile device location points to provide high quality and globally consistent map data at 150m grids across Asia and MENA. Understand who lives in a catchment, where they work and their spending potential to make more informed decisions.

  16. a

    Rural Population in West Asia

    • hub.arcgis.com
    Updated Oct 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2015). Rural Population in West Asia [Dataset]. https://hub.arcgis.com/maps/211d78f6c2964ef9b8c72e9a379fefa4
    Explore at:
    Dataset updated
    Oct 15, 2015
    Dataset authored and provided by
    UN Environment, Early Warning &Data Analytics
    Area covered
    Earth
    Description

    This map contains population data for the various countries of West Asia in 2012. This includes comparisons by rural population, economically-active population, and population economically active in agriculture. The underlying data consists of both estimates and projections for different periods as available from the original sources respectively from the UN Population Division and ILO.

  17. s

    Tonga 100m Urban change

    • eprints.soton.ac.uk
    Updated May 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop, (2023). Tonga 100m Urban change [Dataset]. http://doi.org/10.5258/SOTON/WP00278
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    Tonga
    Description

    DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882

  18. a

    Population Density Map - Map Service

    • hub.arcgis.com
    Updated Aug 15, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damian's Organization (2012). Population Density Map - Map Service [Dataset]. https://hub.arcgis.com/datasets/1607107bf62446fba9704ccf510d46ed_0
    Explore at:
    Dataset updated
    Aug 15, 2012
    Dataset authored and provided by
    Damian's Organization
    Area covered
    Description

    This map shows density surfaces derived from the 2010 US Census block points.The block points were interpolated using the density function to a 2km x 2km grid of the continental US (with water and coastal data masks). There are many stories in these Maps:- What is that clean North/South Line through the center? Why do so many people live East of that line?- Notice the paths of the towns in the west – why are they so linear? And it seems there is a pattern to the spaces between the towns, why?- Looking at the ethnic maps, what explains the patterns? Look at the % Native American map – what are the areas of higher values? (note I did not make a % Asian map as at this scale there was not enough % to show any significant clusters.)

  19. s

    Samoa 100m Urban change

    • eprints.soton.ac.uk
    Updated May 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop, (2023). Samoa 100m Urban change [Dataset]. http://doi.org/10.5258/SOTON/WP00226
    Explore at:
    Dataset updated
    May 5, 2023
    Dataset provided by
    University of Southampton
    Authors
    WorldPop,
    Area covered
    Samoa
    Description

    DATASET: Alpha version 2000 and 2010 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and MODIS-derived urban extent change built in. REGION: Asia SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described on the website and in: Gaughan AE, Stevens FR, Linard C, Jia P and Tatem AJ, 2013, High resolution population distribution maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2): e55882 FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - VNM00urbchg.tif = Vietnam (VNM) population count map for 2000 (00) adjusted to match UN national estimates and incorporating urban extent and urban population estimates for 2000. DATE OF PRODUCTION: July 2013 Dataset construction details and input data are provided here: www.asiapop.org and here: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055882

  20. a

    Asian Population in the US (Current ACS)

    • gis-for-racialequity.hub.arcgis.com
    Updated Jan 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2021). Asian Population in the US (Current ACS) [Dataset]. https://gis-for-racialequity.hub.arcgis.com/datasets/arcgis-content::asian-population-in-the-us-current-acs
    Explore at:
    Dataset updated
    Jan 5, 2021
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map shows the percentage of Asian population in the US (Non-Hispanic or Latino). The pattern is shown by states, counties, and Census tracts. Zoom or search for anywhere in the US to see a local pattern. Click on an area to learn more. Filter to your area and save a new version of the map to use for your own mapping purposes.The data is from the U.S. Census Bureau's American Community Survey (ACS). The figures in this map update automatically annually when the newest estimates are released by ACS. For more detailed metadata, visit the ArcGIS Living Atlas Layer: ACS Race and Hispanic Origin Variables - Boundaries.The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesData Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Andrea E. Gaughan; Forrest R. Stevens; Catherine Linard; Peng Jia; Andrew J. Tatem (2023). High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015 [Dataset]. http://doi.org/10.1371/journal.pone.0055882

High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015

Explore at:
129 scholarly articles cite this dataset (View in Google Scholar)
tiffAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
PLOS ONE
Authors
Andrea E. Gaughan; Forrest R. Stevens; Catherine Linard; Peng Jia; Andrew J. Tatem
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
South East Asia, Asia
Description

Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org.

Search
Clear search
Close search
Google apps
Main menu