Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Available data for gross domestic product (GDP) and population density are useful for defining divisions in socio-economic gradients across Europe, since economic power and human population pressure are recognised as two of the most critical factors causing ecosystem changes. To overcome both the limitations in data availability and in the distortions caused by using administrative regions, we decided to base the socio-economic dimension on an economic density indicator, defined as the income generated per square kilometre (EUR km-2), which can be mapped at a 1km2 spatial resolution. Economic density forms an integrative indicator that is based on two key drivers that were identified above: economic power and human population pressure. The indicator, which has been used to rank countries by their level of development, can be considered a crude measure for impacts on the environment caused by economic activity. An economic density map (EUR km-2) at 1 km2 spatial resolution was constructed by multiplying economic power (EUR person-1) with population density (person km-2). Subsequent logarithmic divisions resulted in an aggregated map of four economic density zones. Although the map has a fine spatial resolution it has to be realised that they form a spatial disaggregation of coarser census statistics. Importantly, the finer resolution discerns regional gradients in human activity that are required for many environmental studies, whilst broad gradients in economic activity is also treated consistently across Europe. GDP and population density data used were for the year 2001. The dataset consists of GeoTiff files of the economic density map and the four economic density zones.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This map shows the population density in North-Eastern Europe in 2011. This map is extracted from the cartographic atlas made on the occasion of the merger of the Alsace, Champagne-Ardenne and Lorraine Regions in January 2016. It is available on the website of the Grand Est Region. This map was designed for A3 format, landscape.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).
https://doi.org/10.4121/resource:terms_of_usehttps://doi.org/10.4121/resource:terms_of_use
The dataset provides information on exposure to natural hazards for 37 European countries and territories from 1870 to 2020 in 100 m resolution. The database was constructed using high-resolution maps of present land use and population, a large compilation of historical statistics, and relatively simple and explicit models and disaggregation techniques. It can be utilized to study changes in exposure, vulnerability and risk to various natural hazards.
Date des données : 21/05/2018Source des données : Natural EarthCette couche d’entités a été réalisée par Esri France avec des données de Natural Earth. Elle est en Web Mercator et couvre le monde entier. Une couche « océan » est également disponible pour cacher la carte de fonde.Cette couche d’entités est offerte par l’équipe Contenus et Services en Ligne d’Esri France. Les données sont optimisées pour l’usage dans la plateforme ArcGIS. Plus d’information sur les offres sur esrifrance.fr/contenus. Contactez-nous avec des questions ou des commentaires via info@esrifrance.fr.
This shapefile represents sovereign states of Europe for the year 1. Sovereign states are considered as sovereign or independent states all entities fulfilling the following conditions: a) a territory covering a geographic area, b) an own population, c) an authority ruling the territory and the population, d) this authority is sovereign, i.e. not subject to any other power or state. This layer is part of the Euratlas Georeferenced Vector Data collection that is composed of 21 maps, one for each century from year 1 to year 2000. These maps depict the detailed political situation of Europe at the first day of each centennial year C.E. from year 1 to 2000. Each map is composed of two kinds of layers: physical features layers, such as seas and rivers, and political features layers, such as states and cities. Some layers also cover adjacent portions of North Africa and the Middle East.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Contains all data for the map "Eastern Native Population, Early 17th Century" in the unit Native Population and Subsistence, 17th Century in the Historical Atlas of Canada Online Learning Project. View data in 'tree' view to download the data for specific maps. Documentation and file location found in the file: HACOLP_Nat_Pop_East_17C_Distribution_Info_20161207.pdf NB: Other maps in this unit not included in Byron Moldofsky's distribution folder but that we could probably make available in this same dataset: "Linguistic Families, 17th Century", "Eastern Native Population, Early 17th Century", "Native Subsistence at European Contact, Ethnohistoric Data", and Native Subsistence, 1000 CE to European Contact, Archaeological Data"
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
Population age distribution in Europe. Map type: Charts. Spatial extent: Europe. Times: 1960, 1970, 1980, 1990, 2000, 2010, 2015, 2020. Distinction: 10-year class, 5-year class
Important Note: This item is in mature support as of June 2023 and will retire in December 2025. A new version of this item is available for your use.Europe NUTS 2 Demographics and Boundaries provides NUTS 2 level demographic, economic, and boundary information for Europe.Europe NUTS 2 Demographics and Boundaries represents areas of aggregated socioeconomic and demographic information at the NUTS 2 level for Europe. NUTS 2 units have an average population between 800,000 and 3,000,000 people. NUTS (Nomenclature des Unités Territoriales Statistiques) refers to the Nomenclature of Territorial Units for Statistics.The 2020 demographic attributes and boundaries are provided by Michael Bauer Research GmbH. These were published in 2021 and are updated annually.
The map depicts flood prone areas in Europe for flood events with 100-year return period. Cell values indicate water depth (in m). The map can be used to assess flood exposure and risk of population and assets
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides all output data generated in the standard settings of HANZE v2.0 model. The 100-m pan-European maps (GeoTIFF) provide gridded totals of five variables for years 1870-2020 for 42 countries. The rasters are group in five ZIP files:
- CLC: land cover/use (Corine Land Cover classification; legend files are included in a separate ZIP)
- Pop: population
- GDP: gross domestic product (2020 euros)
- FA: fixed asset value (2020 euros)
- imp: imperviousness density (%)
Two additional CSV files contain uncertainty estimates of population, GDP and fixed asset value per NUTS3 region and flood hazard zone. The files provide 5th, 20th, 50th, 80th and 95th percentile for all timesteps, separately for coastal and riverine floods.
Two further Excel files contain subnational and national-level statistical data on population, land use and economic variables.
For detailed description of the files, see the documentation provided with the code.
This version replaces the airport list, which was previously incorrectly taken from HANZE v1, and adds land cover/use legend files for ArcGIS and QGIS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The genetic basis of phenotypic variation can be partially explained by the presence of copy-number variations (CNVs). Currently available methods for CNV assessment include high-density single-nucleotide polymorphism (SNP) microarrays that have become an indispensable tool in genome-wide association studies (GWAS). However, insufficient concordance rates between different CNV assessment methods call for cautious interpretation of results from CNV-based genetic association studies. Here we provide a cross-population, microarray-based map of copy-number variant regions (CNVRs) to enable reliable interpretation of CNV association findings. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to scan the genomes of 1167 individuals from two ethnically distinct populations (Europe, N = 717; Rwanda, N = 450). Three different CNV-finding algorithms were tested and compared for sensitivity, specificity, and feasibility. Two algorithms were subsequently used to construct CNVR maps, which were also validated by processing subsamples with additional microarray platforms (Illumina 1M-Duo BeadChip, Nimblegen 385K aCGH array) and by comparing our data with publicly available information. Both algorithms detected a total of 42669 CNVs, 74% of which clustered in 385 CNVRs of a cross-population map. These CNVRs overlap with 862 annotated genes and account for approximately 3.3% of the haploid human genome. We created comprehensive cross-populational CNVR-maps. They represent an extendable framework that can leverage the detection of common CNVs and additionally assist in interpreting CNV-based association studies.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The European Copernicus Coastal Flood Awareness System (ECFAS) project aimed at contributing to the evolution of the Copernicus Emergency Management Service (https://emergency.copernicus.eu/) by demonstrating the technical and operational feasibility of a European Coastal Flood Awareness System. Specifically, ECFAS provides a much-needed solution to bolster coastal resilience to climate risk and reduce population and infrastructure exposure by monitoring and supporting disaster preparedness, two factors that are fundamental to damage prevention and recovery if a storm hits.
The ECFAS Proof-of-Concept development ran from January 2021 to December 2022. The ECFAS project was a collaboration between Scuola Universitaria Superiore IUSS di Pavia (Italy, ECFAS Coordinator), Mercator Ocean International (France), Planetek Hellas (Greece), Collecte Localisation Satellites (France), Consorzio Futuro in Ricerca (Italy), Universitat Politecnica de Valencia (Spain), University of the Aegean (Greece), and EurOcean (Portugal), and was funded by the European Commission H2020 Framework Programme within the call LC-SPACE-18-EO-2020 - Copernicus evolution: research activities in support of the evolution of the Copernicus services.
Description of the containing files inside the Dataset.
The ECFAS Coastal Dataset represents a single access point to publicly available Pan-European datasets that provide key information for studying coastal areas. The publicly available datasets listed below have been clipped to the coastal area extent, quality-checked and assessed for completeness and usability in terms of coverage, accuracy, specifications and access. The dataset was divided at European country level, except for the Adriatic area which was extracted as a region and not at the country level due to the small size of the countries. The buffer zone of each data was 10km inland in order to be correlated with the new Copernicus product Coastal Zone LU/LC.
Specifically, the dataset includes the new Coastal LU/LC product which was implemented by the EEA and became available at the end of 2020. Additional information collected in relation to the location and characteristics of transport (road and railway) and utility networks (power plants), population density and time variability. Furthermore, some of the publicly available datasets that were used in CEMS related to the above mentioned assets were gathered such as OpenStreetMap (building footprints, road and railway network infrastructures), GeoNames (populated places but also names of administrative units, rivers and lakes, forests, hills and mountains, parks and recreational areas, etc.), the Global Human Settlement Layer (GHS) and Global Human Settlement Population Grid (GHS-POP) generated by JRC. Also, the dataset contains 2 layers with statistics information regarding the population of Europe per sex and age divided in administrative units at NUTS level 3. The first layer includes information for the whole of Europe and the second layer has only the information regarding the population at the Coastal area. Finally, the dataset includes the global database of Floods protection standards. Below there are tables which present the dataset.
* Adriatic folder contains the countries: Slovenia, Croatia, Montenegro, Albania, Bosnia and Herzegovina
* Malta was added to the dataset
Copernicus Land Monitoring Service:
Coastal LU/LC
Scale 1:10.000; A Copernicus hotspot product to monitor landscape dynamics in coastal zones
EU-Hydro - Coastline
Scale 1:30.000; EU-Hydro is a dataset for all European countries providing the coastline
Natura 2000
Scale 1: 100000; A Copernicus hotspot product to monitor important areas for nature conservation
European Settlement Map
Resolution 10m; A spatial raster dataset that is mapping human settlements in Europe
Imperviousness Density
Resolution 10m; The percentage of sealed area
Impervious Built-up
Resolution 10m; The part of the sealed surfaces where buildings can be found
Grassland 2018
Resolution 10m; A binary grassland/non-grassland product
Tree Cover Density 2018
Resolution 10m; Level of tree cover density in a range from 0-100%
Joint Research Center:
Global Human Settlement Population Grid
GHS-POP)
Resolution 250m; Residential population estimates for target year 2015
GHS settlement model layer
(GHS-SMOD)
Resolution 1km: The GHS Settlement Model grid delineates and classify settlement typologies via a logic of population size, population and built-up area densities
GHS-BUILT
Resolution 10m; Built-up grid derived from Sentinel-2 global image composite for reference year 2018
ENACT 2011 Population Grid
(ENACT-POP R2020A)
Resolution 1km; The ENACT is a population density for the European Union that take into account major daily and monthly population variations
JRC Open Power Plants Database (JRC-PPDB-OPEN)
Europe's open power plant database
GHS functional urban areas
(GHS-FUA R2019A)
Resolution 1km; City and its commuting zone (area of influence of the city in terms of labour market flows)
GHS Urban Centre Database
(GHS-UCDB R2019A)
Resolution 1km; Urban Centres defined by specific cut-off values on resident population and built-up surface
Additional Data:
Open Street Map (OSM)
BF, Transportation Network, Utilities Network, Places of Interest
CEMS
Data from Rapid Mapping activations in Europe
GeoNames
Populated places, Adm. units, Hydrography, Forests, Hills/Mountains, Parks, etc.
Global Administrative Areas
Administrative areas of all countries, at all levels of sub-division
NUTS3 Population Age/Sex Group
Eurostat population by age and sex statistics interescted with the NUTS3 Units
FLOPROS
A global database of FLOod PROtection Standards, which comprises information in the form of the flood return period associated with protection measures, at different spatial scales
Disclaimer:
ECFAS partners provide the data "as is" and "as available" without warranty of any kind. The ECFAS partners shall not be held liable resulting from the use of the information and data provided.
This project has received funding from the Horizon 2020 research and innovation programme under grant agreement No. 101004211
The map depicts flood prone areas in Europe for flood events with 20-year return period. Cell values indicate water depth (in m). The map can be used to assess flood exposure and risk of population and assets
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
This dataset presents the refined version of the degree of urbanisation of European countries. The degree of urbanisation relies on a population grid to classify local units. Originally the classification system was developed for the European Statistical System to classify local units into three classes (level 1): cities, towns & suburbs, and rural areas. In this version the classification was further refined (level 2) to also identify smaller individual settlements; distinguishing towns from suburbs and identifying villages, dispersed areas and mostly uninhabited areas in former rural areas class. The final classes of the refined degree of urbanisation dataset are six, namely 1) cities, 2) towns, 3) suburbs, 4) villages, 5) dispersed rural areas and 6) mostly uninhabited areas. The temporal reference is set between 2011 and 2012 because of the main inputs, the GEOSTAT population grid 2011 and the European Settlement Map 2012 from Copernicus. IMPORTANT NOTE: This metadata has been created using draft documentation provided by the European Commission, DG REGIO. This dataset has been created by the European Commission, DG Regional and Urban Policy (REGIO) in cooperation with the Joint Research Centre (JRC). Re-distribution or re-use of this dataset is allowed provided that the source is acknowledged.
RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.
The map depicts flood prone areas in Europe for flood events with 200-year return period. Cell values indicate water depth (in m). The map can be used to assess flood exposure and risk of population and assets
https://doi.org/10.4121/resource:terms_of_usehttps://doi.org/10.4121/resource:terms_of_use
The dataset contains input information used to prepare exposure maps for 37 European countries and territories from 1870 to 2020. It includes baseline land cover/use map and population map, and Excel tables with national or regional-level data on the environment, population and economy. Inofrmation on currencies and inflation can be used to convert nominal value of natural hazard-related losses to present-value euro.
https://doi.org/10.5061/dryad.3xsj3txrc
The mapping approach generally follows the methods described in (Chapron et al. 2014) and (Kaczensky et al. 2013). It updates the published Species Online Layers 2012-2016 for brown bear, Eurasian lynx, wolf, golden jackal, and wolverine (Kaczensky et al. 2021; Ranc et al. 2022) for the period 2017-2022/23.
Large carnivore presence was mapped at a 10 x 10 km (ETRS89-LAEA Europe) grid scale. This grid is widely used for Habitat Directive reporting to the European Union (EU) and can be downloaded at: http://www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2. The map encompasses the continental EU countries plus Switzerland and Norway, and the EU candidate / potential candidate countries in the Balkan region, in addition ...
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
Permanent resident population in Europe. Map type: Charts. Spatial extent: Europe. Time: 1950 – 2020
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Available data for gross domestic product (GDP) and population density are useful for defining divisions in socio-economic gradients across Europe, since economic power and human population pressure are recognised as two of the most critical factors causing ecosystem changes. To overcome both the limitations in data availability and in the distortions caused by using administrative regions, we decided to base the socio-economic dimension on an economic density indicator, defined as the income generated per square kilometre (EUR km-2), which can be mapped at a 1km2 spatial resolution. Economic density forms an integrative indicator that is based on two key drivers that were identified above: economic power and human population pressure. The indicator, which has been used to rank countries by their level of development, can be considered a crude measure for impacts on the environment caused by economic activity. An economic density map (EUR km-2) at 1 km2 spatial resolution was constructed by multiplying economic power (EUR person-1) with population density (person km-2). Subsequent logarithmic divisions resulted in an aggregated map of four economic density zones. Although the map has a fine spatial resolution it has to be realised that they form a spatial disaggregation of coarser census statistics. Importantly, the finer resolution discerns regional gradients in human activity that are required for many environmental studies, whilst broad gradients in economic activity is also treated consistently across Europe. GDP and population density data used were for the year 2001. The dataset consists of GeoTiff files of the economic density map and the four economic density zones.