Facebook
TwitterThe Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Population Density Grid estimates population per square km for the years 1990, 1995, and 2000 by 30 arc-second (1km) grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 1,000,000 national and sub-national geographic Units, is used to assign population values to grid cells. The population count grids are divided by the land area grid to produce population density grids. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: Joseph Kerski, post_secondary_educator, Esri and University of DenverGrade/Audience: high school, ap human geography, post secondary, professional developmentResource type: lessonSubject topic(s): population, maps, citiesRegion: africa, asia, australia oceania, europe, north america, south america, united states, worldStandards: All APHG population tenets. Geography for Life cultural and population geography standards. Objectives: 1. Understand how population change and demographic characteristics are evident at a variety of scales in a variety of places around the world. 2. Understand the whys of where through analysis of change over space and time. 3. Develop skills using spatial data and interactive maps. 4. Understand how population data is communicated using 2D and 3D maps, visualizations, and symbology. Summary: Teaching and learning about demographics and population change in an effective, engaging manner is enriched and enlivened through the use of web mapping tools and spatial data. These tools, enabled by the advent of cloud-based geographic information systems (GIS) technology, bring problem solving, critical thinking, and spatial analysis to every classroom instructor and student (Kerski 2003; Jo, Hong, and Verma 2016).
Facebook
TwitterThe geographic distribution of human population is key to understanding the effects of humans on the natural world and how natural events such as storms, earthquakes, and other natural phenomenon affect humans. Dataset SummaryThis layer was created with a model that combines imagery, road intersection density, populated places, and urban foot prints to create a likelihood surface. The likelihood surface is then used to create a raster of population with a cell size of 0.00221 degrees (approximately 250 meters).The population raster is created usingDasymetriccartographic methods to allocate the population values in over 1.6 million census polygons covering the world.The population of each polygon was normalized to the 2013 United Nations population estimates by country.Each cell in this layer has an integer value depicting the number of people that are likely to reside in that cell. Tabulations based on these values should result in population totals that more accurately reflect the population of areas of several square kilometers.This layer has global coverage and was published by Esri in 2014.More information about this layer is available:Building the Most Detailed Population Map in the World
Facebook
TwitterArcGIS includes a comprehensive set of demographic and purchasing maps and data for dozens of countries around the world. This includes recent demographic information such as total population, family size, marital status, population by age, and more. It also includes purchasing information on many types of products. This information can be accessed as ready-to-use map layers, including pre-configured popups, which can be re-styled and added to your maps and apps. The primary source of this information is Michael Bauer Research.This map features a small selection of these map layers that are available to users with an ArcGIS Online subscription. You can preview several of the map layers in this map. To access the map layers individually, please visit the Demographics and Lifestyle group, which features a complete set of ready-to-use maps and map layers, and can be searched for maps in specific countries.
Facebook
TwitterThe Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population density grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.
Facebook
TwitterThe Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Population Density Grid estimates population per square km for the years 1990, 1995, and 2000 by 30 arc-second (1km) grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 1,000,000 national and sub-national geographic Units, is used to assign population values to grid cells. The population count grids are divided by the land area grid to produce population density grids. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).
Facebook
TwitterPopulation data for a selection of countries, allocated to 1 arcsecond blocks and provided in a combination of CSV and Cloud-optimized GeoTIFF files. This refines CIESIN’s Gridded Population of the World using machine learning models on high-resolution worldwide Maxar satellite imagery. CIESIN population counts aggregated from worldwide census data are allocated to blocks where imagery appears to contain buildings.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Facebook
TwitterThe Gridded Population of the World, Version 3 (GPWv3): Subnational Administrative Boundaries are the basis of the population data products in GPWv3. Due to copyright restrictions, only maps of the subnational administrative boundaries are available, the underlying data cannot be released. GPWv3 is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with Centro Internacional de Agricultura Tropical (CIAT).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in OurDataWorld:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F5ba70e2a6c4926d6d6cf25183d04d768%2Fgraph1.png?generation=1721857623801679&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F37881b8889c3e253207b67f0115b704e%2Fgraph2.png?generation=1721857629220811&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F6391ebd97d7f80974d7acd60a10b914d%2Fgraph3.png?generation=1721857634439762&alt=media" alt="">
Population growth is one of the most important topics we cover at Our World in Data.
For most of human history, the global population was a tiny fraction of what it is today. Over the last few centuries, the human population has gone through an extraordinary change. In 1800, there were one billion people. Today there are more than 8 billion of us.
But after a period of very fast population growth, demographers expect the world population to peak by the end of this century.
On this page, you will find all of our data, charts, and writing on changes in population growth. This includes how populations are distributed worldwide, how this has changed, and what demographers expect for the future. Geographical maps show us where the world's landmasses are; not where people are. That means they don't always give us an accurate picture of how global living standards are changing.
One way to understand the distribution of people worldwide is to redraw the world map – not based on the area but according to population.
This is shown here as a population cartogram: a geographical presentation of the world where the size of countries is not drawn according to the distribution of land but by the distribution of people. It’s shown for the year 2018.
As the population size rather than the territory is shown in this map, you can see some significant differences when you compare it to the standard geographical map we’re most familiar with.
Small countries with a high population density increase in size in this cartogram relative to the world maps we are used to – look at Bangladesh, Taiwan, or the Netherlands. Large countries with a small population shrink in size – look for Canada, Mongolia, Australia, or Russia.
Facebook
TwitterThis dataset contains estimates of the number of persons per square kilometer consistent with national censuses and population registers. There is one image for each modeled year. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Facebook
TwitterInteractive web map for Understanding World Regional Geography, 1st Edition. Fouberg, Erin H., and William G. Moseley. Understanding World Regional Geography. 1st ed. John Wiley & Sons, 2015.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Facebook
TwitterThe population density maps presented here for the UNDESERT study areas in Burkina Faso, Benin, Niger and Senegal for 1990, 2000 and 2010 were produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Centro Internacional de Agricultura Tropical (CIAT). CIESIN/CIAT population density grids are available for the entire globe at a 2.5 arc-minutes resolution (http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/sets/browse). The UNDESERT project (EU FP7 243906), financed by the European Commission, Directorate General for Research and Innovation, Environment Program, aims to improve the Understanding and Combating of Desertification to Mitigate its Impact on Ecosystem Services in West Africa. Humans originate and contribute significantly to desertification processes. Based on the CIESIN/CIAT population density grids we want to illustrate how population density changed in the UNDESERT study areas and countries during the last 20 years. Data for 1990 and 2000 were downloaded from the Gridded Population of the World, Version 3 (GPWv3) consisting of estimates of human population by 2.5 arc-minute grid cells and associated data sets dated circa 2000. Data for 2010 were copied from the Gridded Population of the World, Version 3 (GPWv3) consisting in a future estimate of human population by 2.5 arc-minute grid cells. The future estimate population values are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics.
Source: http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density. Accessed 28/10/2013 And http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid, Future Estimates. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates. Accessed 28/10/2013
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer was created by Duncan Smith and based on work by the European Commission JRC and CIESIN. A description from his website follows:--------------------A brilliant new dataset produced by the European Commission JRC and CIESIN Columbia University was recently released- the Global Human Settlement Layer (GHSL). This is the first time that detailed and comprehensive population density and built-up area for the world has been available as open data. As usual, my first thought was to make an interactive map, now online at- http://luminocity3d.org/WorldPopDen/The World Population Density map is exploratory, as the dataset is very rich and new, and I am also testing out new methods for navigating statistics at both national and city scales on this site. There are clearly many applications of this data in understanding urban geographies at different scales, urban development, sustainability and change over time.
Facebook
TwitterThe Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020.�A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery.
Facebook
Twitterhttp://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj
OBSOLETE RELEASE - The use of the GHSL Data Package 2022 (GHS P2022) is currently not recommended. CHECK FOR THE MOST UPDATED VERSION OF GHSL DATASETS AT https://ghsl.jrc.ec.europa.eu/datasets.php - The spatial raster dataset depicts the distribution of population, expressed as the number of people per cell. Residential population estimates between 1975 and 2020 in 5 years intervals and projections to 2025 and 2030 derived from CIESIN GPWv4.11 were disaggregated from census or administrative units to grid cells, informed by the distribution, density, and classification of built-up as mapped in the Global Human Settlement Layer (GHSL) global layer per corresponding epoch.
This dataset is an update of the product released in 2019. Major improvements are the following: use of improved built-up surface maps (GHS-BUILT-S R2022A); use of more recent and detailed population estimates derived from GPWv4.11 integrating both UN World Population Prospects 2019 country population data and World Urbanisation Prospects 2018 data on Cities; better representation of cities population time series; systematic improvement of census coastlines; systematic revision of census units declared as unpopulated; integration of non-residential built-up surface information (GHS-BUILT-S_NRES R2022A); spatial resolution of 100m Mollweide (and 3 arcseconds in WGS84); projections to 2030.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery.
Facebook
TwitterThe Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Population Density Grid estimates population per square km for the years 1990, 1995, and 2000 by 30 arc-second (1km) grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 1,000,000 national and sub-national geographic Units, is used to assign population values to grid cells. The population count grids are divided by the land area grid to produce population density grids. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).