In 2023, the population of Africa was projected to grow by 2.34 percent compared to the previous year. The population growth rate on the continent has been constantly over 2.3 percent from 2000 onwards, and it peaked at 2.59 percent between 2012 and 2013. Despite a slowdown in the growth rate, the continent's population will continue to increase significantly in the coming years. The second-largest population worldwide In 2022, the total population of Africa amounted to around 1.4 billion. The number of inhabitants had grown steadily in the previous decades, rising from approximately 810 million in 2000. Driven by a decreasing mortality rate and a higher life expectancy at birth, the African population was forecast to increase to about 2.5 billion individuals by 2050. Africa is currently the second most populous continent worldwide after Asia. However, forecasts showed that Africa could gradually close the gap and almost reach the size of the Asian population in 2100. By that year, Africa might count 3.9 billion people, compared to 4.7 billion in Asia. The world's youngest continent The median age in Africa corresponded to 18.8 years in 2023. Although the median age has increased in recent years, the continent remains the youngest worldwide. In 2023, roughly 40 percent of the African population was aged 15 years and younger, compared to a global average of 25 percent. Africa recorded not only the highest share of youth but also the smallest elderly population worldwide. As of the same year, only three percent of Africa's population was aged 65 years and older. Africa and Latin America were the only regions below the global average of 10 percent. On the continent, Niger, Uganda, and Angola were the countries with the youngest population in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa Population: Mid Year: African: Male: 10 to 14 Years data was reported at 2,229,354.000 Person in 2018. This records an increase from the previous number of 2,161,893.482 Person for 2017. South Africa Population: Mid Year: African: Male: 10 to 14 Years data is updated yearly, averaging 2,046,838.645 Person from Jun 2001 (Median) to 2018, with 18 observations. The data reached an all-time high of 2,229,354.000 Person in 2018 and a record low of 1,916,836.523 Person in 2013. South Africa Population: Mid Year: African: Male: 10 to 14 Years data remains active status in CEIC and is reported by Statistics South Africa. The data is categorized under Global Database’s South Africa – Table ZA.G003: Population: Mid Year: by Group, Age and Sex.
In 2023, the share of the population with access to electricity in Sub-Saharan Africa increased by *** percentage points (+*** percent) compared to 2022. With ***** percent, the share thereby reached its highest value in the observed period. Access to electricity refers to the share of the population having the possibility to access electricity
This statistic shows the age structure in the Central African Republic from 2013 to 2023. In 2023, about 49.17 percent of the Central African Republic's total population were aged 0 to 14 years.
This statistic shows the population change in Sub-Saharan Africa from 2014 to 2024. Sub-Saharan Africa includes almost all countries south of the Saharan desert. In 2024, Sub-Saharan Africa's population increased by approximately 2.44 percent compared to the previous year.
This statistic shows the total population of Sub-Saharan Africa from 2013 to 2023. Sub-Saharan Africa includes all countries south of the Sahara desert. In 2023, the total population of Sub-Saharan Africa amounted to approximately 1.26 billion inhabitants.
(UNCLASSIFIED) This dataset depicts LandScan data (population estimate) for the African countries of Liberia, Sierra Leone, Guinea, Nigeria, Senegal, Gambia, Guinea Bissau, Mali, Benin, Ghana, Togo, Burkina Faso, and Cote D'Ivoire for 2013. The LandScan Global Population Database was developed by Oak Ridge National Laboratory (ORNL) for the United States Department of Defense (DoD). The LandScan (TM) Dataset comprises a worldwide population database compiled on a 30" X 30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on proximity to roads, slope, land cover, nighttime lights, and other information. LandScan has been developed as part of the ORNL's Global Population Project for estimating ambient populations at risk. This release represents the 14th version of LandScan and succeeds all previous versions. It is recommended that users of previous versions of LandScan replace any earlier version with LandScan 2013.(UNCLASSIFIED) Since no single population distribution model can account for the differences in spatial data availability, quality, scale, and accuracy as well as the differences in cultural settlement practices, LandScan population distribution models are tailored to match the data conditions and geographical nature of each individual country and region. The unique aspect of population distribution measurement that Landscan methodology provides, and that differs from other population data, is the representation of average population distribution across a variety of socio cultural and economic human activities, not solely where people reside and sleep.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa Population: Mid Year: North West: 10 to 14 Years data was reported at 377,237.000 Person in 2018. This records an increase from the previous number of 349,809.189 Person for 2017. South Africa Population: Mid Year: North West: 10 to 14 Years data is updated yearly, averaging 323,891.788 Person from Jun 2001 (Median) to 2018, with 18 observations. The data reached an all-time high of 377,237.000 Person in 2018 and a record low of 306,196.965 Person in 2013. South Africa Population: Mid Year: North West: 10 to 14 Years data remains active status in CEIC and is reported by Statistics South Africa. The data is categorized under Global Database’s South Africa – Table ZA.G004: Population: Mid Year: by Province, Age and Sex.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa Population: Mid Year: Eastern Cape: 10 to 14 Years data was reported at 727,015.000 Person in 2018. This records an increase from the previous number of 700,056.903 Person for 2017. South Africa Population: Mid Year: Eastern Cape: 10 to 14 Years data is updated yearly, averaging 728,290.609 Person from Jun 2001 (Median) to 2018, with 18 observations. The data reached an all-time high of 919,159.039 Person in 2002 and a record low of 644,540.729 Person in 2013. South Africa Population: Mid Year: Eastern Cape: 10 to 14 Years data remains active status in CEIC and is reported by Statistics South Africa. The data is categorized under Global Database’s South Africa – Table ZA.G004: Population: Mid Year: by Province, Age and Sex.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2013 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Telephone service data are not available for certain geographic areas due to problems with data collection. See Errata Note #93 for details. ..Occupation codes are 4-digit codes and are based on Standard Occupational Classification 2010..Industry codes are 4-digit codes and are based on the North American Industry Classification System 2012. The Industry categories adhere to the guidelines issued in Clarification Memorandum No. 2, "NAICS Alternate Aggregation Structure for Use By U.S. Statistical Agencies," issued by the Office of Management and Budget..Due to methodological changes to data collection for data year 2013, comparisons of current-year language estimates to past years' language estimates should be made with caution. For more information, see: http://www.census.gov/acs/www/data_documentation/user_notes/.In data year 2013, there were a series of changes to data collection operations that could have affected some estimates. These changes include the addition of Internet as a mode of data collection, the end of the content portion of Failed Edit Follow-Up interviewing, and the loss of one monthly panel due to the Federal Government shut down in October 2013. For more information, see: User Notes.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2013 American Community Survey
(by Joseph Kerski)This map is for use in the "What is the spatial pattern of demographic variables around the world?" activity in Section 1 of the Going Places with Spatial Analysiscourse. The map contains population characteristics by country for 2013.These data come from the Population Reference Bureau's 2014 World Population Data Sheet.The Population Reference Bureau (PRB) informs people around the world about population, health, and the environment, empowering them to use that information to advance the well-being of current and future generations.PRB analyzes complex demographic data and research to provide the most objective, accurate, and up-to-date population information in a format that is easily understood by advocates, journalists, and decision makers alike.The 2014 year's data sheet has detailed information on 16 population, health, and environment indicators for more than 200 countries. For infant mortality, total fertility rate, and life expectancy, we have included data from 1970 and 2013 to show change over time. This year's special data column is on carbon emissions.For more information about how PRB compiles its data, see: https://www.prb.org/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa Population: Mid Year: Indian and Asian: 25 to 29 Years data was reported at 124,722.000 Person in 2018. This records an increase from the previous number of 124,273.103 Person for 2017. South Africa Population: Mid Year: Indian and Asian: 25 to 29 Years data is updated yearly, averaging 121,309.750 Person from Jun 2001 (Median) to 2018, with 18 observations. The data reached an all-time high of 124,797.624 Person in 2013 and a record low of 93,363.000 Person in 2001. South Africa Population: Mid Year: Indian and Asian: 25 to 29 Years data remains active status in CEIC and is reported by Statistics South Africa. The data is categorized under Global Database’s South Africa – Table ZA.G003: Population: Mid Year: by Group, Age and Sex.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2009-2013 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Telephone service data are not available for certain geographic areas due to problems with data collection. See Errata Note #93 for details. ..Industry codes are 4-digit codes and are based on the North American Industry Classification System (NAICS). The Census industry codes for 2013 and later years are based on the 2012 revision of the NAICS. To allow for the creation of 2009-2013 and 2011-2013 tables, industry data in the multiyear files (2009-2013 and 2011-2013) were recoded to 2013 Census industry codes. We recommend using caution when comparing data coded using 2013 Census industry codes with data coded using Census industry codes prior to 2013. For more information on the Census industry code changes, please visit our website at http://www.census.gov/people/io/methodology/..Census occupation codes are 4-digit codes and are based on the Standard Occupational Classification (SOC). The Census occupation codes for 2010 and later years are based on the 2010 revision of the SOC. To allow for the creation of 2009-2013 tables, occupation data in the multiyear files (2009-2013) were recoded to 2013 Census occupation codes. We recommend using caution when comparing data coded using 2013 Census occupation codes with data coded using Census occupation codes prior to 2010. For more information on the Census occupation code changes, please visit our website at http://www.census.gov/people/io/methodology/..Methodological changes to data collection in 2013 may have affected language data for 2013. Users should be aware of these changes when using multi-year data containing data from 2013..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a dis...
The population density maps presented here for the UNDESERT study areas in Burkina Faso, Benin, Niger and Senegal for 1990, 2000 and 2010 were produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Centro Internacional de Agricultura Tropical (CIAT). CIESIN/CIAT population density grids are available for the entire globe at a 2.5 arc-minutes resolution (http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/sets/browse). The UNDESERT project (EU FP7 243906), financed by the European Commission, Directorate General for Research and Innovation, Environment Program, aims to improve the Understanding and Combating of Desertification to Mitigate its Impact on Ecosystem Services in West Africa. Humans originate and contribute significantly to desertification processes. Based on the CIESIN/CIAT population density grids we want to illustrate how population density changed in the UNDESERT study areas and countries during the last 20 years. Data for 1990 and 2000 were downloaded from the Gridded Population of the World, Version 3 (GPWv3) consisting of estimates of human population by 2.5 arc-minute grid cells and associated data sets dated circa 2000. Data for 2010 were copied from the Gridded Population of the World, Version 3 (GPWv3) consisting in a future estimate of human population by 2.5 arc-minute grid cells. The future estimate population values are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics.
Source: http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density. Accessed 28/10/2013 And http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid, Future Estimates. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates. Accessed 28/10/2013
Lagos, in Nigeria, ranked as the most populated city in Africa as of 2024, with an estimated population of roughly nine million inhabitants living in the city proper. Kinshasa, in Congo, and Cairo, in Egypt, followed with some 7.8 million and 7.7 million dwellers. Among the 15 largest cities in the continent, another two, Kano, and Ibadan, were located in Nigeria, the most populated country in Africa. Population density trends in Africa As of 2022, Africa exhibited a population density of 48.3 individuals per square kilometer. At the beginning of 2000, the population density across the continent has experienced a consistent annual increment. Projections indicated that the average population residing within each square kilometer would rise to approximately 54 by the year 2027. Moreover, Mauritius stood out as the African nation with the most elevated population density, exceeding 640 individuals per square kilometre. Mauritius possesses one of the most compact territories on the continent, a factor that significantly influences its high population density. Urbanization dynamics in Africa The urbanization rate in Africa was anticipated to reach close to 44 percent in 2021. Urbanization across the continent has consistently risen since 2000, with urban areas accommodating 35 percent of the total population. This trajectory is projected to continue its ascent in the years ahead. Nevertheless, the distribution between rural and urban populations shows remarkable diversity throughout the continent. In 2021, Gabon and Libya stood out as Africa’s most urbanized nations, each surpassing 80 percent urbanization. In 2023, Africa's population was estimated to expand by 2.35 percent compared to the preceding year. Since 2000, the population growth rate across the continent has consistently exceeded 2.45 percent, reaching its pinnacle at 2.59 percent between 2012 and 2013. Although the growth rate has experienced a deceleration, Africa's population will persistently grow significantly in the forthcoming years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa Population: Mid Year: Eastern Cape: Female: 40 to 44 Years data was reported at 165,128.000 Person in 2018. This records a decrease from the previous number of 165,531.377 Person for 2017. South Africa Population: Mid Year: Eastern Cape: Female: 40 to 44 Years data is updated yearly, averaging 169,251.802 Person from Jun 2001 (Median) to 2018, with 18 observations. The data reached an all-time high of 189,533.597 Person in 2002 and a record low of 163,220.286 Person in 2013. South Africa Population: Mid Year: Eastern Cape: Female: 40 to 44 Years data remains active status in CEIC and is reported by Statistics South Africa. The data is categorized under Global Database’s South Africa – Table ZA.G004: Population: Mid Year: by Province, Age and Sex.
Taux de scolarisation de la population du Burkina Faso de 2003-2013
The West Africa Coastal Vulnerability Mapping: Social Vulnerability Indices data set includes three indices: Social Vulnerability, Population Exposure, and Poverty and Adaptive Capacity. The Social Vulnerability Index (SVI) was developed using six indicators: population density (2010), population growth (2000-2010), subnational poverty and extreme poverty (2005), maternal education levels circa 2008, market accessibility (travel time to markets) circa 2000, and conflict data for political violence (1997-2013). Because areas of high population density and growth (high vulnerability) are generally associated with urban areas that have lower levels of poverty and higher degrees of adaptive capacity (low vulnerability), to some degree, the population factors cancel out the poverty and adaptive capacity indicators. To account for this, the data set includes two sub-indices, a Population Exposure Index (PEI), which only includes population density and population growth; and a Poverty and Adaptive Capacity Index (PACI), composed of subnational poverty, maternal education levels, market accessibility, and conflict. These sub-indices are able to isolate the population indicators from the poverty and conflict metrics. The indices represent Social Vulnerability in the West Africa region within 200 kilometers of the coast.
As of January 2024, there were 45.3 million internet users in South Africa. This was an increase of roughly 1.8 million individuals compared to the previous year. The digital population increased significantly from close to 25 million in 2013.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in South Gorin. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2011 and 2021, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/south-gorin-mo-median-household-income-by-race-trends.jpeg" alt="South Gorin, MO median household income trends across races (2011-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Gorin median household income by race. You can refer the same here
In 2023, the population of Africa was projected to grow by 2.34 percent compared to the previous year. The population growth rate on the continent has been constantly over 2.3 percent from 2000 onwards, and it peaked at 2.59 percent between 2012 and 2013. Despite a slowdown in the growth rate, the continent's population will continue to increase significantly in the coming years. The second-largest population worldwide In 2022, the total population of Africa amounted to around 1.4 billion. The number of inhabitants had grown steadily in the previous decades, rising from approximately 810 million in 2000. Driven by a decreasing mortality rate and a higher life expectancy at birth, the African population was forecast to increase to about 2.5 billion individuals by 2050. Africa is currently the second most populous continent worldwide after Asia. However, forecasts showed that Africa could gradually close the gap and almost reach the size of the Asian population in 2100. By that year, Africa might count 3.9 billion people, compared to 4.7 billion in Asia. The world's youngest continent The median age in Africa corresponded to 18.8 years in 2023. Although the median age has increased in recent years, the continent remains the youngest worldwide. In 2023, roughly 40 percent of the African population was aged 15 years and younger, compared to a global average of 25 percent. Africa recorded not only the highest share of youth but also the smallest elderly population worldwide. As of the same year, only three percent of Africa's population was aged 65 years and older. Africa and Latin America were the only regions below the global average of 10 percent. On the continent, Niger, Uganda, and Angola were the countries with the youngest population in 2023.