Facebook
TwitterThe Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:
IPUMS 1930 households: This dataset includes all households from the 1930 US census.
IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.
IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edite
Facebook
TwitterIn the past four centuries, the population of the Thirteen Colonies and United States of America has grown from a recorded 350 people around the Jamestown colony in Virginia in 1610, to an estimated 346 million in 2025. While the fertility rate has now dropped well below replacement level, and the population is on track to go into a natural decline in the 2040s, projected high net immigration rates mean the population will continue growing well into the next century, crossing the 400 million mark in the 2070s. Indigenous population Early population figures for the Thirteen Colonies and United States come with certain caveats. Official records excluded the indigenous population, and they generally remained excluded until the late 1800s. In 1500, in the first decade of European colonization of the Americas, the native population living within the modern U.S. borders was believed to be around 1.9 million people. The spread of Old World diseases, such as smallpox, measles, and influenza, to biologically defenseless populations in the New World then wreaked havoc across the continent, often wiping out large portions of the population in areas that had not yet made contact with Europeans. By the time of Jamestown's founding in 1607, it is believed the native population within current U.S. borders had dropped by almost 60 percent. As the U.S. expanded, indigenous populations were largely still excluded from population figures as they were driven westward, however taxpaying Natives were included in the census from 1870 to 1890, before all were included thereafter. It should be noted that estimates for indigenous populations in the Americas vary significantly by source and time period. Migration and expansion fuels population growth The arrival of European settlers and African slaves was the key driver of population growth in North America in the 17th century. Settlers from Britain were the dominant group in the Thirteen Colonies, before settlers from elsewhere in Europe, particularly Germany and Ireland, made a large impact in the mid-19th century. By the end of the 19th century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. It is also estimated that almost 400,000 African slaves were transported directly across the Atlantic to mainland North America between 1500 and 1866 (although the importation of slaves was abolished in 1808). Blacks made up a much larger share of the population before slavery's abolition. Twentieth and twenty-first century The U.S. population has grown steadily since 1900, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. Since WWII, the U.S. has established itself as the world's foremost superpower, with the world's largest economy, and most powerful military. This growth in prosperity has been accompanied by increases in living standards, particularly through medical advances, infrastructure improvements, clean water accessibility. These have all contributed to higher infant and child survival rates, as well as an increase in life expectancy (doubling from roughly 40 to 80 years in the past 150 years), which have also played a large part in population growth. As fertility rates decline and increases in life expectancy slows, migration remains the largest factor in population growth. Since the 1960s, Latin America has now become the most common origin for migrants in the U.S., while immigration rates from Asia have also increased significantly. It remains to be seen how immigration restrictions of the current administration affect long-term population projections for the United States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Census Tree is the largest-ever database of record links among the historical U.S. censuses, with over 700 million links for people living in the United States between 1850 and 1940. These links allow researchers to construct a longitudinal dataset that is highly representative of the population, and that includes women, Black Americans, and other under-represented populations at unprecedented rates. Each .csv file consists of a crosswalk between the two years indicated in the filename, using the IPUMS histids. For more information, consult the included Read Me file, and visit https://censustree.org.
Facebook
TwitterThis dataset includes all individuals from the 1930 US census.
Facebook
TwitterAttribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
Deciphering government Census data is tedious. This data is easy to understand.
County level population level for each decade from 1930 to 2010
US Census
Plot population changes over time for counties and/or states
Facebook
TwitterThis dataset includes all households from the 1930 US census.
Facebook
TwitterThis dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Facebook
TwitterUnited States Department of Commerce.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/37155/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37155/terms
This collection contains five modified data sets with mortality, population, and other demographic information for five American cities (Baltimore, Maryland; Boston, Massachusetts; New Orleans, Louisiana; New York City (Manhattan only), New York; and Philadelphia, Pennsylvania) from the early 19th century to the early 20th century. Mortality was represented by an annual crude death rate (deaths per 1000 population per year). The population was linearly interpolated from U.S. Census data and state census data (for Boston and New York City). All data sets include variables for year, total deaths, census populations, estimated annual linearly interpolated populations, and crude death rate. The Baltimore data set (DS0001) also provides birth and death rate variables based on race and slave status demographics, as well as a variable for stillbirths. The Philadelphia data set (DS0005) also includes variables for total births, total infant deaths, crude birth rate, and infant deaths per 1,000 live births.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Sources: U.S. Census Bureau, Census 2020; generated by CCRPC staff; using 2020 Census Demographic Data Map Viewer; https://www.census.gov/library/visualizations/2021/geo/demographicmapviewer.html; (18 August 2021); U.S. Census Bureau; Census 2000, Summary File 1, Table DP-1; generated by CCRPC staff; using American FactFinder; http://factfinder2.census.gov; (30 December 2015). U.S. Census Bureau; Census 2010, Summary File 1, Table P1; generated by CCRPC staff; using American FactFinder; http://factfinder2.census.gov; (30 December 2015). U.S. Census Bureau; 1980 Census of Population, Volume 1: Characteristics of the Population, Chapter A: Number of Inhabitants, Part 15: Illinois, PC80-1-A15, Table 2, Land Area and Population: 1930-1980. U.S. Census Bureau; Fourteenth Census of the United States; State Compendium Illinois, Table 1. - Area and Population of Counties: 1850 to 1920; https://www.census.gov/library/publications/1924/dec/state-compendium.html; (23 August 2018).
Facebook
TwitterThe world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/RWFQKChttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/RWFQKC
Population of Massachusetts Cities, Towns & Counties: Census Counts, 1930-2000* and Census Estimates, 2000-2004
Facebook
TwitterIn 1800, the present-day region of Mexico had a population of just over six million people. Mexico gained its independence from the Spanish crown in 1821, and population growth remained steady for the next 85 years. Growth then halted with with the Panic of 1907, an American financial crisis whose ripple effects in Mexico would set the stage for the Mexican Revolution in 1910. This revolution would see population flatline at just over fifteen million between 1910 and 1920, as widespread conflict and result in the death of between 1.7 to 2.7 million over the decade, and the coinciding 1918 Spanish Flu epidemic would see the loss of another 300,000 in this time period. Following the end of both the Mexican Revolution and the Spanish Flu epidemic in 1920, the population of Mexico would begin to increase rapidly as modernization would see mortality rates fall and standards of living rise throughout the country. This growth has continued steadily into the 21st century, and in 2020, Mexico is estimated to have a population of just under 129 million.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Tuscarawas County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Tuscarawas County. The dataset can be utilized to understand the population distribution of Tuscarawas County by age. For example, using this dataset, we can identify the largest age group in Tuscarawas County.
Key observations
The largest age group in Tuscarawas County, OH was for the group of age 60 to 64 years years with a population of 6,542 (7.07%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Tuscarawas County, OH was the 85 years and over years with a population of 1,930 (2.08%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Tuscarawas County Population by Age. You can refer the same here
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Sources: U.S. Census Bureau; 2020 Census (P.L. 94-171) Redistricting Data Summary Files; (25 August 2021). U.S. Census Bureau; Census 2000, Summary File 1, Table DP-1; generated by CCRPC staff; using American FactFinder; http://factfinder2.census.gov; (30 December 2015). U.S. Census Bureau; Census 2010, Summary File 1, Table P1; generated by CCRPC staff; using American FactFinder; http://factfinder2.census.gov; (30 December 2015). U.S. Census Bureau; 1980 Census of Population, Volume 1: Characteristics of the Population, Chapter A: Number of Inhabitants, Part 15: Illinois, PC80-1-A15, Table 4, Population of County Subdivisions: 1960-1980, Department of Commerce and Labor Bureau of the Census; Thirteenth Census of the United States Taken in the Year 1910, Statistics for Illinois, Table 1. - Population of Minor Civil Divisions: 1910, 1900, and 1890.; https://www.census.gov/programs-surveys/decennial-census/decade/decennial-publications.1910.html; (23 August 2018). Department of Commerce Bureau of the Census; Fourteenth Census of the United States, State Compendium Illinois, Table 2. - Population of Minor Civil Divisions: 1920, 1910, and 1900. https://www.census.gov/library/publications/1924/dec/state-compendium.html; (23 August 2018). U.S. Department of Commerce Bureau of the Census; Fifteenth Census of the United States: 1930, Population: Volume III, Reports by States, Illinois and Idaho, Table 21; https://www.census.gov/library/publications/1932/dec/1930a-vol-03-population.html; (23 August 2018). United States Department of Commerce Bureau of the Census, Sixteenth Census of the United States: 1940, Population: Volume 1, Number of Inhabitants, Total Population for States, Counties, and Minor Civil Divisions; for Urban and Rural Areas; for Incorporated Places; for Metropolitan Districts; and for Census Tracts; Table 4; https://www.census.gov/library/publications/1942/dec/population-vol-1.html.; (23 August 2018). U.S Department of Commerce Bureau of the Census; Census of Population: 1950, Volume I Number of Inhabitants, Table 6; https://www.census.gov/library/publications/1952/dec/population-vol-01.html; (23 August 2018).
Facebook
TwitterApproximately 41 million people immigrated to the United States of America between the years 1820 and 1957. During this time period, the United States expanded across North America, growing from 23 to 48 states, and the population grew from approximately 10 million people in 1820, to almost 180 million people by 1957. Economically, the U.S. developed from being an agriculturally focused economy in the 1820s, to having the highest GDP of any single country in the 1950s. Much of this expansion was due to the high numbers of agricultural workers who migrated from Europe, as technological advances in agriculture had lowered the labor demand. The majority of these migrants settled in urban centers, and this fueled the growth of the industrial sector.
American industrialization and European rural unemployment fuel migration The first major wave of migration came in the 1850s, and was fueled largely by Irish and German migrants, who were fleeing famine or agricultural depression at the time. The second boom came in the 1870s, as the country recovered from the American Civil War, and the Second Industrial Revolution took off. The final boom of the nineteenth century came in the 1880s, as poor harvests and industrialization in Europe led to mass emigration. Improvements in steam ship technology and lower fares led to increased migration from Eastern and Southern Europe at the turn of the century (particularly from Italy). War and depression reduces migration Migration to the U.S. peaked at the beginning of the 20th century, before it fluctuated greatly at the beginning of the 20th century. This was not only due to the disruptions to life in Europe caused by the world wars, but also the economic disruption of the Great Depression in the 1930s. The only period between 1914 and 1950 where migration was high was during the 1920s. However, the migration rate rose again in the late 1940s, particularly from Latin America and Asia. The historically high levels of migration from Europe has meant that the most common ethnicity in the U.S. has been non-Hispanic White since the early-colonial period, however increased migration from Latin America, Asia and Africa, and higher fertility rates among ethnic minorities, have seen the Whites' share of the total population fall in recent years (although it is still over three times larger than any other group.
Facebook
TwitterIn 1938, the year before the outbreak of the Second world War, the countries with the largest populations were China, the Soviet Union, and the United States, although the United Kingdom had the largest overall population when it's colonies, dominions, and metropole are combined. Alongside France, these were the five Allied "Great Powers" that emerged victorious from the Second World War. The Axis Powers in the war were led by Germany and Japan in their respective theaters, and their smaller populations were decisive factors in their defeat. Manpower as a resource In the context of the Second World War, a country or territory's population played a vital role in its ability to wage war on such a large scale. Not only were armies able to call upon their people to fight in the war and replenish their forces, but war economies were also dependent on their workforce being able to meet the agricultural, manufacturing, and logistical demands of the war. For the Axis powers, invasions and the annexation of territories were often motivated by the fact that it granted access to valuable resources that would further their own war effort - millions of people living in occupied territories were then forced to gather these resources, or forcibly transported to work in manufacturing in other Axis territories. Similarly, colonial powers were able to use resources taken from their territories to supply their armies, however this often had devastating consequences for the regions from which food was redirected, contributing to numerous food shortages and famines across Africa, Asia, and Europe. Men from annexed or colonized territories were also used in the armies of the war's Great Powers, and in the Axis armies especially. This meant that soldiers often fought alongside their former-enemies. Aftermath The Second World War was the costliest in human history, resulting in the deaths of between 70 and 85 million people. Due to the turmoil and destruction of the war, accurate records for death tolls generally do not exist, therefore pre-war populations (in combination with other statistics), are used to estimate death tolls. The Soviet Union is believed to have lost the largest amount of people during the war, suffering approximately 24 million fatalities by 1945, followed by China at around 20 million people. The Soviet death toll is equal to approximately 14 percent of its pre-war population - the countries with the highest relative death tolls in the war are found in Eastern Europe, due to the intensity of the conflict and the systematic genocide committed in the region during the war.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Wood County population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Wood County. The dataset can be utilized to understand the population distribution of Wood County by age. For example, using this dataset, we can identify the largest age group in Wood County.
Key observations
The largest age group in Wood County, WV was for the group of age 55-59 years with a population of 6,287 (7.42%), according to the 2021 American Community Survey. At the same time, the smallest age group in Wood County, WV was the 85+ years with a population of 1,930 (2.28%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wood County Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Bloomfield by race. It includes the distribution of the Non-Hispanic population of Bloomfield across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Bloomfield across relevant racial categories.
Key observations
Of the Non-Hispanic population in Bloomfield, the largest racial group is White alone with a population of 1,930 (97.38% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bloomfield Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterThe highest rate of unintentional-injury-related deaths at home in the United States was **** per 100,000 population in 2021 and 2022. This statistic shows the rate of unintentional-injury-related deaths at home in the United States from 1930 to 2023, per every 100,000 population.
Facebook
TwitterThe Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:
IPUMS 1930 households: This dataset includes all households from the 1930 US census.
IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.
IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edite