Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 5th Edition (1978 to 1995) of the National Atlas of Canada is a map that shows distribution of Indians and Inuit using several types of symbols to represent population in 1976.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Canadian by race. It includes the population of Canadian across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Canadian across relevant racial categories.
Key observations
The percent distribution of Canadian population by race (across all racial categories recognized by the U.S. Census Bureau): 87.26% are white, 3.30% are American Indian and Alaska Native and 9.43% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Canadian Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The ORBIT (Object Recognition for Blind Image Training) -India Dataset is a collection of 105,243 images of 76 commonly used objects, collected by 12 individuals in India who are blind or have low vision. This dataset is an "Indian subset" of the original ORBIT dataset [1, 2], which was collected in the UK and Canada. In contrast to the ORBIT dataset, which was created in a Global North, Western, and English-speaking context, the ORBIT-India dataset features images taken in a low-resource, non-English-speaking, Global South context, a home to 90% of the world’s population of people with blindness. Since it is easier for blind or low-vision individuals to gather high-quality data by recording videos, this dataset, like the ORBIT dataset, contains images (each sized 224x224) derived from 587 videos. These videos were taken by our data collectors from various parts of India using the Find My Things [3] Android app. Each data collector was asked to record eight videos of at least 10 objects of their choice.
Collected between July and November 2023, this dataset represents a set of objects commonly used by people who are blind or have low vision in India, including earphones, talking watches, toothbrushes, and typical Indian household items like a belan (rolling pin), and a steel glass. These videos were taken in various settings of the data collectors' homes and workspaces using the Find My Things Android app.
The image dataset is stored in the ‘Dataset’ folder, organized by folders assigned to each data collector (P1, P2, ...P12) who collected them. Each collector's folder includes sub-folders named with the object labels as provided by our data collectors. Within each object folder, there are two subfolders: ‘clean’ for images taken on clean surfaces and ‘clutter’ for images taken in cluttered environments where the objects are typically found. The annotations are saved inside a ‘Annotations’ folder containing a JSON file per video (e.g., P1--coffee mug--clean--231220_084852_coffee mug_224.json) that contains keys corresponding to all frames/images in that video (e.g., "P1--coffee mug--clean--231220_084852_coffee mug_224--000001.jpeg": {"object_not_present_issue": false, "pii_present_issue": false}, "P1--coffee mug--clean--231220_084852_coffee mug_224--000002.jpeg": {"object_not_present_issue": false, "pii_present_issue": false}, ...). The ‘object_not_present_issue’ key is True if the object is not present in the image, and the ‘pii_present_issue’ key is True, if there is a personally identifiable information (PII) present in the image. Note, all PII present in the images has been blurred to protect the identity and privacy of our data collectors. This dataset version was created by cropping images originally sized at 1080 × 1920; therefore, an unscaled version of the dataset will follow soon.
This project was funded by the Engineering and Physical Sciences Research Council (EPSRC) Industrial ICASE Award with Microsoft Research UK Ltd. as the Industrial Project Partner. We would like to acknowledge and express our gratitude to our data collectors for their efforts and time invested in carefully collecting videos to build this dataset for their community. The dataset is designed for developing few-shot learning algorithms, aiming to support researchers and developers in advancing object-recognition systems. We are excited to share this dataset and would love to hear from you if and how you use this dataset. Please feel free to reach out if you have any questions, comments or suggestions.
REFERENCES:
Daniela Massiceti, Lida Theodorou, Luisa Zintgraf, Matthew Tobias Harris, Simone Stumpf, Cecily Morrison, Edward Cutrell, and Katja Hofmann. 2021. ORBIT: A real-world few-shot dataset for teachable object recognition collected from people who are blind or low vision. DOI: https://doi.org/10.25383/city.14294597
microsoft/ORBIT-Dataset. https://github.com/microsoft/ORBIT-Dataset
Linda Yilin Wen, Cecily Morrison, Martin Grayson, Rita Faia Marques, Daniela Massiceti, Camilla Longden, and Edward Cutrell. 2024. Find My Things: Personalized Accessibility through Teachable AI for People who are Blind or Low Vision. In Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems (CHI EA '24). Association for Computing Machinery, New York, NY, USA, Article 403, 1–6. https://doi.org/10.1145/3613905.3648641
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is based on Statistics Canada census data spanning four census periods (2001, 2006, 2016, and 2021). The dataset captures population statistics disaggregated by ethnicity at the Dissemination Area (DA) level—the smallest standard geographic unit for census data dissemination, covering approximately 400-700 people per unit. For Toronto, this encompasses approximately 3,700 DAs, providing high spatial resolution for analyzing urban dynamics. The dataset includes detailed population counts for the five largest ethnic groups in Toronto: China, India, Philippines, Portugal, and Sri Lanka. The features are also extracted from census datasets and 298 socioeconomic and demographic features from the census data, organized into 12 categories:Demographics: Population age structure, household composition, and family sizeHousing: Dwelling types, ownership status, housing values, and maintenance needsFamily Structure: Marriage patterns, presence of children, household typesIncome: Median household and individual income, income sourcesEmployment: Labor force participation, employment/unemployment ratesMobility & Migration: Internal and external migration patterns, non-permanent residentsVisible Minorities: Population distribution by visible minority statusLanguage: Official language use, mother tongue, and multilingual capabilitiesOccupation: Employment categories across economic sectorsReligion: Religious affiliations and practicesIndustry: Distribution across industry sectorsPlace of Birth: Country of origin information
Data on immigrant status and period of immigration by place of birth, citizenship, age and gender for the population in private households in Canada, provinces and territories, census metropolitan areas and parts.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Temporary residents who are in Canada on a study permit in the observed calendar year. Datasets include study permit holders by year in which permit(s) became effective or with a valid permit in a calendar year or on December 31st. Please note that in these datasets, the figures have been suppressed or rounded to prevent the identification of individuals when the datasets are compiled and compared with other publicly available statistics. Values between 0 and 5 are shown as “--“ and all other values are rounded to the nearest multiple of 5. This may result to the sum of the figures not equating to the totals indicated.
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
This map shows where senior populations are found throughout the world. Areas with more than 10% seniors are highlighted with a dark red shading while a dot representation reveals the number of seniors and their distribution in bright red.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Data on the immigrant population by place of birth, period of immigration, gender and age for the population in private households in Canada.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Examining international student demographics helps educational institutions better understand the diverse backgrounds and requirements of their global student community. This dataset provides insights into a variety of aspects including, gender, marital status, Visa type, origin of country, academic level, and much more.
For use case and analysis reference, please take a look at this notebook "https://www.kaggle.com/code/webdevbadger/international-student-demographics-analysis">International Student Demographics Analysis .
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16711385%2Fefde694297c2830c0058032eae820358%2Ftop-countries.png?generation=1704958145733418&alt=media" alt="">
This dataset contains information about annual estimates of fine particulate matter (PM2.5) concentrations and trends beginning in 1998. PM2.5 refers to airborne particulate matter less than 2.5 µm in diameter; comprises several chemical and particulate constituents, including nitrate, ammonium, elemental carbons, organic carbons, silicon and sodium ions and dust, and originates from a variety of sources, including vehicle exhaust, forest fires, and industrial processes. Exposure to PM2.5 is a leading environmental risk factor for mortality and the global burden of disease.
Global and regional PM2.5 concentrations are estimated using a combination of satellite observations, chemical transport modeling, and ground-based monitoring. Annual and coarse-resolution averages correspond to a simple mean of within-grid values. Gridded datasets are provided to allow users to agglomerate data as best meets their particular needs.
Annual and monthly datasets are provided in NetCDF [.nc] format, with naming convention V6GL02.02.CNNPM25.REGION.YYYYMM_START-YYYYMM_END.nc. REGION refers to the file region (e.g. ‘Global’). YYYYMM_START and YYYYMM_END refer to the numeric start and end date of the file (e.g. for annual mean PM2.5 for 2015, YYYYMM_START is 201501 and YYYYMM_END is 201512). Gridded files use the WGS84 projection.
Variable names within these files include "lat" (latitude coordinate centers of the PM2.5 grid, "lon" (longitude coordinates centers of the PM2.5 grid), and "PM25" (gridded mean PM2.5 concentrations).
Processed summary files are available for annual global country-level means, Canada provincial-level means, China and India regional-level means, and US state-level means. Population-weighted estimates and total population describe only those people covered by the V6.GL.02.02 dataset and are provided by Gridded Population of the World, version 4 (GPWv4). Country borders are defined following the Database of Global Administrative Areas, version 3.6 (GAD3.6).
This study provides an update on measures of educational attainment for a broad cross section of countries. In our previous work (Barro and Lee, 1993), we constructed estimates of educational attainment by sex for persons aged 25 and over. The values applied to 129 countries over a five-year intervals from 1960 to 1985.
The present study adds census information for 1985 and 1990 and updates the estimates of educational attainment to 1990. We also have been able to add a few countries, notably China, which were previously omitted because of missing data.
Dataset:
Educational attainment at various levels for the male and female population. The data set includes estimates of educational attainment for the population by age - over age 15 and over age 25 - for 126 countries in the world. (see Barro, Robert and J.W. Lee, "International Measures of Schooling Years and Schooling Quality, AER, Papers and Proceedings, 86(2), pp. 218-223 and also see "International Data on Education", manuscipt.) Data are presented quinquennially for the years 1960-1990;
Educational quality across countries. Table 1 presents data on measures of schooling inputs at five-year intervals from 1960 to 1990. Table 2 contains the data on average test scores for the students of the different age groups for the various subjects.Please see Jong-Wha Lee and Robert J. Barro, "Schooling Quality in a Cross-Section of Countries," (NBER Working Paper No.w6198, September 1997) for more detailed explanation and sources of data.
The data set cobvers the following countries: - Afghanistan - Albania - Algeria - Angola - Argentina - Australia - Austria - Bahamas, The - Bahrain - Bangladesh - Barbados - Belgium - Benin - Bolivia - Botswana - Brazil - Bulgaria - Burkina Faso - Burundi - Cameroon - Canada - Cape verde - Central African Rep. - Chad - Chile - China - Colombia - Comoros - Congo - Costa Rica - Cote d'Ivoire - Cuba - Cyprus - Czechoslovakia - Denmark - Dominica - Dominican Rep. - Ecuador - Egypt - El Salvador - Ethiopia - Fiji - Finland - France - Gabon - Gambia - Germany, East - Germany, West - Ghana - Greece - Grenada - Guatemala - Guinea - Guinea-Bissau - Guyana - Haiti - Honduras - Hong Kong - Hungary - Iceland - India - Indonesia - Iran, I.R. of - Iraq - Ireland - Israel - Italy - Jamaica - Japan - Jordan - Kenya - Korea - Kuwait - Lesotho - Liberia - Luxembourg - Madagascar - Malawi - Malaysia - Mali - Malta - Mauritania - Mauritius - Mexico - Morocco - Mozambique - Myanmar (Burma) - Nepal - Netherlands - New Zealand - Nicaragua - Niger - Nigeria - Norway - Oman - Pakistan - Panama - Papua New Guinea - Paraguay - Peru - Philippines - Poland - Portugal - Romania - Rwanda - Saudi Arabia - Senegal - Seychelles - Sierra Leone - Singapore - Solomon Islands - Somalia - South africa - Spain - Sri Lanka - St.Lucia - St.Vincent & Grens. - Sudan - Suriname - Swaziland - Sweden - Switzerland - Syria - Taiwan - Tanzania - Thailand - Togo - Tonga - Trinidad & Tobago - Tunisia - Turkey - U.S.S.R. - Uganda - United Arab Emirates - United Kingdom - United States - Uruguay - Vanuatu - Venezuela - Western Samoa - Yemen, N.Arab - Yugoslavia - Zaire - Zambia - Zimbabwe
https://www.usa.gov/government-works/https://www.usa.gov/government-works/
This data set come from UCI Machine Learning Repository at https://archive.ics.uci.edu/ml/datasets/census+income
Prediction task is to determine whether a person makes over 50K a year from the analysis of 13 predictors.
age: continuous. workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked. fnlwgt: continuous. education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool. education-num: continuous. marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse. occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried. race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. sex: Female, Male. capital-gain: continuous. capital-loss: continuous. hours-per-week: continuous. native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))
The weights on the CPS files are controlled to independent estimates of the civilian non-institutional population of the US. These are prepared monthly for us by Population Division here at the Census Bureau. We use 3 sets of controls.
These are:
We use all three sets of controls in our weighting program and "rake" through them 6 times so that by the end we come back to all the controls we used.
The term estimate refers to population totals derived from CPS by creating "weighted tallies" of any specified socio-economic characteristics of the population.
People with similar demographic characteristics should have similar weights. There is one important caveat to remember about this statement. That is that since the CPS sample is actually a collection of 51 state samples, each with its own probability of selection, the statement only applies within state.
Data Set Characteristics: Multivariate Area: Social Attribute Characteristics: Categorical, Integer Number of Attributes: 14 Date Donated: 1996-05-01 Associated Tasks: Classification Missing Values? Yes
This table provides the number of temporary foreign workers in Canada and in provinces by their country of citizenship.
This table contains 25 series, with data for years 1955 - 2013 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...) Last permanent residence (25 items: Total immigrants; France; Great Britain; Total Europe ...).
This map shows where youth populations are found throughout the world. Areas with more than 33% youth are highlighted with a dark red shading while a dot representation reveals the number of seniors and their distribution in bright red.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
https://www.enterpriseappstoday.com/privacy-policyhttps://www.enterpriseappstoday.com/privacy-policy
Minecraft Statistics: The reports say that the gaming industry is expected to reach $431.87 billion by the year 2030. Since technological developments, not only there are laptops and PCs which are gaming-oriented but mobile devices have become compatible with many advanced games today. The recent release of the Harry Potter game ‘ Hogwarts Legacy is already doing its magic on the muggle world. These Minecraft Statistics include insights from various aspects that provide light on why Minecraft is one of the best games today. Editor’s Choice In Minecraft, 24 hours of the game is 20 minutes in real life. As of January 2023, the recorded number of players is 173.5 million. On average, 110,000 concurrent viewers are found on Twitch. Revenue generated from mobile downloads excluding in-game transactions counts for up to 41% of total Minecraft revenue. The Chinese edition of Minecraft has been downloaded more than 400 million times. To heal the players’ health healing potions have been used more than 1.1 billion times. Before launching Minecraft, the game was almost named a ‘Cave Game’. The game sometimes misspells its name by changing the order of words ‘C’ and ‘E’ with ‘Minecraft’. During the initial years of the pandemic, the database of total players increased by more than 14 million. The average age of a player is 24 years.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 5th Edition (1978 to 1995) of the National Atlas of Canada is a map that shows distribution of Indians and Inuit using several types of symbols to represent population in 1976.