The statistic shows the development of the world population from 1950 to 2050. The world population was around 7.38 billion people in 2015.
The global population
As shown above, the total number of people living on Earth has more than doubled since the 1950s, and continues to increase. A look at the development of the world population since the beginning of the Common Era shows that such a surge in numbers is unprecedented. The first significant rise in population occurred during the 14th century, after the Black Death had killed approximately 25 million people worldwide. Subsequently, the global population increased slowly but steadily until it reached record numbers between 1950 and 2000.
The majority of the global population lives on the Asian continent, as a statistic of the world population by continent shows. In around 100 years, it is estimated that population levels on the African continent will have reached similar levels to those we see in Asia today. As for a forecast of the development of the world population, the figures are estimated to have reached more than 10 billion by the 22nd century.
Growing population numbers pose an increasing risk to the planet, since rocketing numbers equal increased consumption of food and resources. Scientists worry that natural resources, such as oil, and food resources will become scarce, endangering the human race and, even more so, the world’s ecosystem. Nowadays, the number of undernourished / starving people worldwide has decreased slightly, but forecasts paint a darker picture.
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
Whereas the population is expected to decrease somewhat until 2100 in Asia, Europe, and South America, it is predicted to grow significantly in Africa. While there were 1.5 billion inhabitants on the continent at the beginning of 2024, the number of inhabitants is expected to reach 3.8 billion by 2100. In total, the global population is expected to reach nearly 10.4 billion by 2100. Worldwide population In the United States, the total population is expected to steadily increase over the next couple of years. In 2024, Asia held over half of the global population and is expected to have the highest number of people living in urban areas in 2050. Asia is home to the two most populous countries, India and China, both with a population of over one billion people. However, the small country of Monaco had the highest population density worldwide in 2021. Effects of overpopulation Alongside the growing worldwide population, there are negative effects of overpopulation. The increasing population puts a higher pressure on existing resources and contributes to pollution. As the population grows, the demand for food grows, which requires more water, which in turn takes away from the freshwater available. Concurrently, food needs to be transported through different mechanisms, which contributes to air pollution. Not every resource is renewable, meaning the world is using up limited resources that will eventually run out. Furthermore, more species will become extinct which harms the ecosystem and food chain. Overpopulation was considered to be one of the most important environmental issues worldwide in 2020.
Before 2025, the world's total population is expected to reach eight billion. Furthermore, it is predicted to reach over 10 billion in 2060, before slowing again as global birth rates are expected to decrease. Moreover, it is still unclear to what extent global warming will have an impact on population development. A high share of the population increase is expected to happen on the African continent.
The West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 data set is based on an unreleased working version of the Gridded Population of the World (GPW), Version 4, year 2010 population count raster but at a coarser 5 arc-minute resolution. Bryan Jones of Baruch College produced country-level projections based on the Shared Socioeconomic Pathway 4 (SSP4). SSP4 reflects a divided world where cities that have relatively high standards of living, are attractive to internal and international migrants. In low income countries, rapidly growing rural populations live on shrinking areas of arable land due to both high population pressure and expansion of large-scale mechanized farming by international agricultural firms. This pressure induces large migration flow to the cities, contributing to fast urbanization, although urban areas do not provide many opportUnities for the poor and there is a massive expansion of slums and squatter settlements. This scenario may not be the most likely for the West Africa region, but it has internal coherence and is at least plausible.
The United States Census Bureau’s international dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the dataset includes midyear population figures broken down by age and gender assignment at birth. Additionally, time-series data is provided for attributes including fertility rates, birth rates, death rates, and migration rates.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.census_bureau_international.
What countries have the longest life expectancy? In this query, 2016 census information is retrieved by joining the mortality_life_expectancy and country_names_area tables for countries larger than 25,000 km2. Without the size constraint, Monaco is the top result with an average life expectancy of over 89 years!
SELECT
age.country_name,
age.life_expectancy,
size.country_area
FROM (
SELECT
country_name,
life_expectancy
FROM
bigquery-public-data.census_bureau_international.mortality_life_expectancy
WHERE
year = 2016) age
INNER JOIN (
SELECT
country_name,
country_area
FROM
bigquery-public-data.census_bureau_international.country_names_area
where country_area > 25000) size
ON
age.country_name = size.country_name
ORDER BY
2 DESC
/* Limit removed for Data Studio Visualization */
LIMIT
10
Which countries have the largest proportion of their population under 25? Over 40% of the world’s population is under 25 and greater than 50% of the world’s population is under 30! This query retrieves the countries with the largest proportion of young people by joining the age-specific population table with the midyear (total) population table.
SELECT
age.country_name,
SUM(age.population) AS under_25,
pop.midyear_population AS total,
ROUND((SUM(age.population) / pop.midyear_population) * 100,2) AS pct_under_25
FROM (
SELECT
country_name,
population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population_agespecific
WHERE
year =2017
AND age < 25) age
INNER JOIN (
SELECT
midyear_population,
country_code
FROM
bigquery-public-data.census_bureau_international.midyear_population
WHERE
year = 2017) pop
ON
age.country_code = pop.country_code
GROUP BY
1,
3
ORDER BY
4 DESC /* Remove limit for visualization*/
LIMIT
10
The International Census dataset contains growth information in the form of birth rates, death rates, and migration rates. Net migration is the net number of migrants per 1,000 population, an important component of total population and one that often drives the work of the United Nations Refugee Agency. This query joins the growth rate table with the area table to retrieve 2017 data for countries greater than 500 km2.
SELECT
growth.country_name,
growth.net_migration,
CAST(area.country_area AS INT64) AS country_area
FROM (
SELECT
country_name,
net_migration,
country_code
FROM
bigquery-public-data.census_bureau_international.birth_death_growth_rates
WHERE
year = 2017) growth
INNER JOIN (
SELECT
country_area,
country_code
FROM
bigquery-public-data.census_bureau_international.country_names_area
Historic (none)
United States Census Bureau
Terms of use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/international-census-data
Until 2100, the world's population is expected to be ageing. Whereas people over 60 years made up less than 13 percent of the world's population in 2024, this share is estimated to reach 28.8 percent in 2100. On the other hand, the share of people between zero and 14 years was expected to decrease by almost ten percentage points over the same period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of global population trends, historical data, and future projections. It includes detailed information for various countries and regions, encompassing key demographic indicators such as population size, growth rates, and density.
The dataset covers a broad time span, from 1980 to 2050, allowing for analysis of long-term population dynamics. It incorporates data from reputable sources like the United Nations Population Division and World Population Review, ensuring data accuracy and reliability.
A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a hybrid gridded dataset of demographic data for the world, given as 5-year population bands at a 0.5 degree grid resolution.
This dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4) with the ISIMIP Histsoc gridded population data and the United Nations World Population Program (WPP) demographic modelling data.
Demographic fractions are given for the time period covered by the UN WPP model (1950-2050) while demographic totals are given for the time period covered by the combination of GPWv4 and Histsoc (1950-2020)
Method - demographic fractions
Demographic breakdown of country population by grid cell is calculated by combining the GPWv4 demographic data given for 2010 with the yearly country breakdowns from the UN WPP. This combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP. This makes it possible to calculate exposure trends from 1980 to the present day.
To combine the UN WPP demographics with the GPWv4 demographics, we calculate for each country the proportional change in fraction of demographic in each age band relative to 2010 as:
\(\delta_{year,\ country,age}^{\text{wpp}} = f_{year,\ country,age}^{\text{wpp}}/f_{2010,country,age}^{\text{wpp}}\)
Where:
- \(\delta_{year,\ country,age}^{\text{wpp}}\) is the ratio of change in demographic for a given age and and country from the UN WPP dataset.
- \(f_{year,\ country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country, and year.
- \(f_{2010,country,age}^{\text{wpp}}\) is the fraction of population in the UN WPP dataset for a given age band, country for the year 2020.
The gridded demographic fraction is then calculated relative to the 2010 demographic data given by GPWv4.
For each subset of cells corresponding to a given country c, the fraction of population in a given age band is calculated as:
\(f_{year,c,age}^{\text{gpw}} = \delta_{year,\ country,age}^{\text{wpp}}*f_{2010,c,\text{age}}^{\text{gpw}}\)
Where:
- \(f_{year,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for given year, for the grid cell c.
- \(f_{2010,c,age}^{\text{gpw}}\) is the fraction of the population in a given age band for 2010, for the grid cell c.
The matching between grid cells and country codes is performed using the GPWv4 gridded country code lookup data and country name lookup table. The final dataset is assembled by combining the cells from all countries into a single gridded time series. This time series covers the whole period from 1950-2050, corresponding to the data available in the UN WPP model.
Method - demographic totals
Total population data from 1950 to 1999 is drawn from ISIMIP Histsoc, while data from 2000-2020 is drawn from GPWv4. These two gridded time series are simply joined at the cut-over date to give a single dataset covering 1950-2020.
The total population per age band per cell is calculated by multiplying the population fractions by the population totals per grid cell.
Note that as the total population data only covers until 2020, the time span covered by the demographic population totals data is 1950-2020 (not 1950-2050).
Disclaimer
This dataset is a hybrid of different datasets with independent methodologies. No guarantees are made about the spatial or temporal consistency across dataset boundaries. The dataset may contain outlier points (e.g single cells with demographic fractions >1). This dataset is produced on a 'best effort' basis and has been found to be broadly consistent with other approaches, but may contain inconsistencies which not been identified.
https://datacatalog1.worldbank.org/public-licenses?fragment=cchttps://datacatalog1.worldbank.org/public-licenses?fragment=cc
This database presents population and other demographic estimates and projections from 1960 to 2050, covering more than 200 economies. It includes population data by various age groups, sex, urban/rural; fertility data; mortality data; and migration data.
World population density 1950-2050
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
It is estimated that more than 8 billion people live on Earth and the population is likely to hit more than 9 billion by 2050. Approximately 55 percent of Earth’s human population currently live in areas classified as urban. That number is expected to grow by 2050 to 68 percent, according to the United Nations (UN).The largest cities in the world include Tōkyō, Japan; New Delhi, India; Shanghai, China; México City, Mexico; and São Paulo, Brazil. Each of these cities classifies as a megacity, a city with more than 10 million people. The UN estimates the world will have 43 megacities by 2030.Most cities' populations are growing as people move in for greater economic, educational, and healthcare opportunities. But not all cities are expanding. Those cities whose populations are declining may be experiencing declining fertility rates (the number of births is lower than the number of deaths), shrinking economies, emigration, or have experienced a natural disaster that resulted in fatalities or forced people to leave the region.This Global Cities map layer contains data published in 2018 by the Population Division of the United Nations Department of Economic and Social Affairs (UN DESA). It shows urban agglomerations. The UN DESA defines an urban agglomeration as a continuous area where population is classified at urban levels (by the country in which the city resides) regardless of what local government systems manage the area. Since not all places record data the same way, some populations may be calculated using the city population as defined by its boundary and the metropolitan area. If a reliable estimate for the urban agglomeration was unable to be determined, the population of the city or metropolitan area is used.Data Citation: United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. Statistical Papers - United Nations (ser. A), Population and Vital Statistics Report, 2019, https://doi.org/10.18356/b9e995fe-en.
"Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.This dataset includes demographic data of 22 countries from 1960 to 2018, including Sri Lanka, Bangladesh, Pakistan, India, Maldives, etc. Data fields include: country, year, population ratio, male ratio, female ratio, population density (km). Source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision. ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme. Periodicity: Annual Statistical Concept and Methodology: Population estimates are usually based on national population censuses. Estimates for the years before and after the census are interpolations or extrapolations based on demographic models. Errors and undercounting occur even in high-income countries. In developing countries errors may be substantial because of limits in the transport, communications, and other resources required to conduct and analyze a full census. The quality and reliability of official demographic data are also affected by public trust in the government, government commitment to full and accurate enumeration, confidentiality and protection against misuse of census data, and census agencies' independence from political influence. Moreover, comparability of population indicators is limited by differences in the concepts, definitions, collection procedures, and estimation methods used by national statistical agencies and other organizations that collect the data. The currentness of a census and the availability of complementary data from surveys or registration systems are objective ways to judge demographic data quality. Some European countries' registration systems offer complete information on population in the absence of a census. The United Nations Statistics Division monitors the completeness of vital registration systems. Some developing countries have made progress over the last 60 years, but others still have deficiencies in civil registration systems. International migration is the only other factor besides birth and death rates that directly determines a country's population growth. Estimating migration is difficult. At any time many people are located outside their home country as tourists, workers, or refugees or for other reasons. Standards for the duration and purpose of international moves that qualify as migration vary, and estimates require information on flows into and out of countries that is difficult to collect. Population projections, starting from a base year are projected forward using assumptions of mortality, fertility, and migration by age and sex through 2050, based on the UN Population Division's World Population Prospects database medium variant."
In November 2022, just over one in ten (12 percent) French people thought that if things continued as they are, the Earth would no longer be livable in 2050. This proportion was higher among 25-34 year olds, among whom one in five shared this opinion. In contrast, only eight percent of people over 65 thought the planet would no longer be livable in 2050.
According to the 2010 UN Global Demographic Outlook, the world’s population reached 7.1 billion as of 1 July 2012. Asia accounted for the majority of the world’s population (just over 60 % in 2012), with 4.25 billion inhabitants, while Africa was the second most populous continent, with 1.07 billion inhabitants, or 15.2 % of the world’s total. By comparison, the EU had 504 million inhabitants in 2012, just over 7 % of the world’s population. In 2012, the world’s most populous countries were China (19.2 % of the world’s population) and India (17.8 %), followed by the United States (4.5 %), Indonesia (3.5 %) and Brazil (2.8 %).
The table contains the demographic projections of the main European countries from 2020 to 2080.
The Eurostat table has been modified by economy-policy in order to obtain better visibility. Indeed, the number of inhabitants is expressed in “million inhabitants” and not in unit data.
In addition, demographic projections for China, India, Brazil and Russia were added for the years 2030, 2040 and 2050.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionThe combined populations of China and India were 2.78 billion in 2020, representing 36% of the world population (7.75 billion). Wheat is the second most important staple grain in both China and India. In 2019, the aggregate wheat consumption in China was 96.4 million ton and in India it was 82.5 million ton, together it was more than 35% of the world's wheat that year. In China, in 2050, the projected population will be 1294–1515 million, and in India, it is projected to be 14.89–1793 million, under the low and high-fertility rate assumptions. A question arises as to, what will be aggregate demand for wheat in China and India in 2030 and 2050?MethodsApplying the Vector Error Correction model estimation process in the time series econometric estimation setting, this study projected the per capita and annual aggregate wheat consumptions of China and India during 2019-2050. In the process, this study relies on agricultural data sourced from the Food and Agriculture Organization of the United States (FAO) database (FAOSTAT), as well as the World Bank's World Development Indicators (WDI) data catalog. The presence of unit root in the data series are tested by applying the augmented Dickey-Fuller test; Philips-Perron unit root test; Kwiatkowski-Phillips-Schmidt-Shin test, and Zivot-Andrews Unit Root test allowing for a single break in intercept and/or trend. The test statistics suggest that a natural log transformation and with the first difference of the variables provides stationarity of the data series for both China and India. The Zivot-Andrews Unit Root test, however, suggested that there is a structural break in urban population share and GDP per capita. To tackle the issue, we have included a year dummy and two multiplicative dummies in our model. Furthermore, the Johansen cointegration test suggests that at least one variable in both data series were cointegrated. These tests enable us to apply Vector Error Correction (VEC) model estimation procedure. In estimation the model, the appropriate number of lags of the variables is confirmed by applying the “varsoc” command in Stata 17 software interface. The estimated yearly per capita wheat consumption in 2030 and 2050 from the VEC model, are multiplied by the projected population in 2030 and 2050 to calculate the projected aggregate wheat demand in China and India in 2030 and 2050. After projecting the yearly per capita wheat consumption (KG), we multiply with the projected population to get the expected consumption demand.ResultsThis study found that the yearly per capita wheat consumption of China will increase from 65.8 kg in 2019 to 76 kg in 2030, and 95 kg in 2050. In India, the yearly per capita wheat consumption will increase to 74 kg in 2030 and 94 kg in 2050 from 60.4 kg in 2019. Considering the projected population growth rates under low-fertility assumptions, aggregate wheat consumption of China will increase by more than 13% in 2030 and by 28% in 2050. Under the high-fertility rate assumption, however the aggregate wheat consumption of China will increase by 18% in 2030 and nearly 50% in 2050. In the case of India, under both low and high-fertility rate assumptions, aggregate wheat demand in India will increase by 32-38% in 2030 and by 70-104% in 2050 compared to 2019 level of consumption.DiscussionsOur results underline the importance of wheat in both countries, which are the world's top wheat producers and consumers, and suggest the importance of research and development investments to maintain sufficient national wheat grain production levels to meet China and India's domestic demand. This is critical both to ensure the food security of this large segment of the world populace, which also includes 23% of the total population of the world who live on less than US $1.90/day, as well as to avoid potential grain market destabilization and price hikes that arise in the event of large import demands.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average level of the ocean has been rising since we started measuring and recording this data. According to the National Aeronautics and Space Agency (NASA), since 1900 the global mean sea level has risen more than 200 millimeters (nearly 8 inches) and nearly half of that increase has occurred since 1993 in a concerning change in rate of rise.Sea level rise is one of the many effects of global warming. Scientists attribute sea level rise to two things, melting ice and increased ocean water temperatures. Increasing air temperatures, particularly in the polar regions, has encouraged the melting of land-based ice reserves such as glaciers, ice sheets, and permafrost. Historically, warm season ice melt was balanced by replenishment during the cold season but warming temperatures have created conditions where melting exceeds the buildup of ice. This water flows through rivers and streams to the ocean in quantities sufficient to contribute to sea level rise.Oceans are also massive heat sinks. They pull large quantities of atmospheric heat and greenhouse gases such as carbon dioxide and store it in the ocean. The sea changes temperature much more slowly than the air and over time ocean temperatures have continued to build. As the ocean water warms it expands causing the sea levels to rise.Sea levels are not rising equally across Earth. Some areas are already experiencing significant impacts due to the rising water levels while others have seen minimal changes. This is due to a variety of reasons. First, despite how it is typically illustrated Earth is not perfectly round so the height of the ocean at any given point varies. This can be due to the Earth’s rotation, ocean currents, or prevailing wind speed and direction.Experts consider sea level rise and urgent climatic threat. Many low-lying places such as islands and coastal areas are already experiencing high waters. Higher waters also make storms such as hurricanes more dangerous due to higher storm surges and flooding. As coastlines could lose key infrastructure, land will become uninhabitable, and many people could lose their livelihoods. It is estimated 10 percent of the world’s population could be impacted as the waters rise. Many of the approximately 770 million people could be forced to migrate to higher ground, or in the case of island countries, such as Kiribati, to new countries once theirs sinks below the sea.This map was created with data from the National Oceanic and Atmospheric Administration (NOAA), NASA, and the United States Geological Survey. Experts used an elevation data and the NOAA model Scenarios of Future Mean Seal Level to illustrate the scale of potential coastal flooding. The mapmaker chose to remove levees from the data, so the areas flooded include places, particularly in the states of Texas and Louisiana, that are presently protected by this infrastructure. It is important to note that these are possible outcomes. This model does not include possible erosion, subsidence, or construction that may occur between 2022 when this data was created and 2030, 2050, or 2090 respectively. While models are powerful tools it is difficult to calculate every aspect that shapes our environment.Learn more about how coastal communities are impacted by sea level rise with this StoryMap by NOAA’s Office for Coastal Management, The King Tides Project: Snap the shore, See the Future.
The statistic shows the development of the world population from 1950 to 2050. The world population was around 7.38 billion people in 2015.
The global population
As shown above, the total number of people living on Earth has more than doubled since the 1950s, and continues to increase. A look at the development of the world population since the beginning of the Common Era shows that such a surge in numbers is unprecedented. The first significant rise in population occurred during the 14th century, after the Black Death had killed approximately 25 million people worldwide. Subsequently, the global population increased slowly but steadily until it reached record numbers between 1950 and 2000.
The majority of the global population lives on the Asian continent, as a statistic of the world population by continent shows. In around 100 years, it is estimated that population levels on the African continent will have reached similar levels to those we see in Asia today. As for a forecast of the development of the world population, the figures are estimated to have reached more than 10 billion by the 22nd century.
Growing population numbers pose an increasing risk to the planet, since rocketing numbers equal increased consumption of food and resources. Scientists worry that natural resources, such as oil, and food resources will become scarce, endangering the human race and, even more so, the world’s ecosystem. Nowadays, the number of undernourished / starving people worldwide has decreased slightly, but forecasts paint a darker picture.