23 datasets found
  1. Population of the United States 1610-2020

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population of the United States 1610-2020 [Dataset]. https://www.statista.com/statistics/1067138/population-united-states-historical/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).

    Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.

  2. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +3more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  3. Total population worldwide 1950-2100

    • statista.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  4. Country-Level Population and Downscaled Projections Based on the SRES A1,...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Country-Level Population and Downscaled Projections Based on the SRES A1, B1, and A2 Scenarios, 1990-2100 - Dataset - NASA Open Data Portal [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/country-level-population-and-downscaled-projections-based-on-the-sres-a1-b1-and-a2-sc-1990
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) A1, B1, and A2 Scenarios, 1990-2100, were adopted in 2000 from population projections realized at the International Institute for Applied Systems Analysis (IIASA) in 1996. The Intergovernmental Panel on Climate Change (IPCC) SRES A1 and B1 scenarios both used the same IIASA "rapid" fertility transition projection, which assumes low fertility and low mortality rates. The SRES A2 scenario used a corresponding IIASA "slow" fertility transition projection (high fertility and high mortality rates). Both IIASA low and high projections are performed for 13 world regions including North Africa, Sub-Saharan Africa, China and Centrally Planned Asia, Pacific Asia, Pacific OECD, Central Asia, Middle East, South Asia, Eastern Europe, European part of the former Soviet Union, Western Europe, Latin America, and North America. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  5. d

    Country-Level Population and Downscaled Projections Based on the SRES B2...

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Dec 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Country-Level Population and Downscaled Projections Based on the SRES B2 Scenario, 1990-2100 [Dataset]. https://catalog.data.gov/dataset/country-level-population-and-downscaled-projections-based-on-the-sres-b2-scenario-1990-210
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    SEDAC
    Description

    The Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) B2 Scenario, 1990-2100, were based on the UN 1998 Medium Long Range Projection for the years 1995 to 2100. The official version projects population for 8 regions of the world including Africa, Asia (minus India and China), India, China, Europe, Latin America, Northern America, and Oceania. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  6. Financing the State: Government Tax Revenue from 1800 to 2012, 31 countries

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Apr 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andersson, Per F.; Brambor, Thomas (2022). Financing the State: Government Tax Revenue from 1800 to 2012, 31 countries [Dataset]. http://doi.org/10.3886/ICPSR38308.v1
    Explore at:
    ascii, r, delimited, spss, stata, sasAvailable download formats
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Andersson, Per F.; Brambor, Thomas
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38308/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38308/terms

    Time period covered
    1800 - 2012
    Area covered
    Spain, Peru, Austria, Japan, Venezuela, Norway, Bolivia, Colombia, Belgium, New Zealand
    Description

    This dataset presents information on historical central government revenues for 31 countries in Europe and the Americas for the period from 1800 (or independence) to 2012. The countries included are: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile, Colombia, Denmark, Ecuador, Finland, France, Germany (West Germany between 1949 and 1990), Ireland, Italy, Japan, Mexico, New Zealand, Norway, Paraguay, Peru, Portugal, Spain, Sweden, Switzerland, the Netherlands, the United Kingdom, the United States, Uruguay, and Venezuela. In other words, the dataset includes all South American, North American, and Western European countries with a population of more than one million, plus Australia, New Zealand, Japan, and Mexico. The dataset contains information on the public finances of central governments. To make such information comparable cross-nationally the researchers chose to normalize nominal revenue figures in two ways: (i) as a share of the total budget, and (ii) as a share of total gross domestic product. The total tax revenue of the central state is disaggregated guided by the Government Finance Statistics Manual 2001 of the International Monetary Fund (IMF) which provides a classification of types of revenue, and describes in detail the contents of each classification category. Given the paucity of detailed historical data and the needs of our project, researchers combined some subcategories. First, they were interested in total tax revenue, as well as the shares of total revenue coming from direct and indirect taxes. Further, they measured two sub-categories of direct taxation, namely taxes on property and income. For indirect taxes, they separated excises, consumption, and customs.

  7. d

    Loudoun County 2020 Census Population Patterns by Race and Hispanic or...

    • catalog.data.gov
    • data.virginia.gov
    • +1more
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loudoun County GIS (2025). Loudoun County 2020 Census Population Patterns by Race and Hispanic or Latino Ethnicity [Dataset]. https://catalog.data.gov/dataset/loudoun-county-2020-census-population-patterns-by-race-and-hispanic-or-latino-ethnicity
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    Loudoun County GIS
    Area covered
    Loudoun County
    Description

    Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.

  8. Dynamics of Population Aging in Economic Commission for Europe (ECE)...

    • icpsr.umich.edu
    Updated Sep 27, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Economic Commission for Europe. Population Activities Unit (2013). Dynamics of Population Aging in Economic Commission for Europe (ECE) Countries, Census Microdata Samples: Estonia, 1989 [Dataset]. http://doi.org/10.3886/ICPSR06780.v1
    Explore at:
    Dataset updated
    Sep 27, 2013
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United Nations Economic Commission for Europe. Population Activities Unit
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/6780/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6780/terms

    Time period covered
    1989
    Area covered
    Estonia, Global
    Description

    The main objectives of this data collection effort were to assemble a set of cross-nationally comparable microdata samples for Economic Commission for Europe (ECE) countries based on the 1990 national population and housing censuses in countries of Europe and North America, and to use these samples to study the social and economic conditions of older persons. The samples are designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. The Estonia microdata sample contains information on persons aged 50 and over and the persons who reside with them. Variables included in this dataset cover geographic area, type of residency, type of dwelling, and household characteristics, as well as demographic information such as age, sex, marital status, number of children, education, income, and occupation.

  9. i

    Roadkills in Europe: areas of high risk of collision and critical for...

    • iepnb.gob.es
    • iepnb.es
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roadkills in Europe: areas of high risk of collision and critical for populations persistence. - Dataset - CKAN [Dataset]. https://iepnb.gob.es/catalogo/dataset/roadkills-in-europe-areas-of-high-risk-of-collision-and-critical-for-populations-persistence
    Explore at:
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Roads and other linear infrastructures are among the largest and most visible human-made artefacts on the planet today and represent a threat for both endangered and common species, mainly due to additional mortality from collisions with vehicles. There is strong evidence that additional non-natural mortality affects many species and a growing number of populations could have increased risk of extinction unless effective mitigation actions are applied. At a global scale, Europe is among the regions with highest transport infrastructures density. Between 1970 and 2000 the kilometres of built roads more than tripled in several countries in Europe (EU-15) reaching up to 3 million km of which around 51 500 km consisted of motorways (1.7%). Currently, 50% of the continent is within 1.5 km of transportation infrastructure which may lead to declines in birds and mammals. We urgently need to advance our understanding of how roads affect biodiversity through two steps: 1) identifying which species and regions are more at risk from infrastructures; and 2) determining where those risks result in impacts (loss of biodiversity). Road ecology as a discipline has largely focused on the first step. In Europe, roadkill rates have been estimated for a wide range of vertebrates with millions of casualties detected each year. However, we still lack estimates for all species or areas, even in well-studied regions. The aim of this study is to determine which species are at risk due to roads and where roads can impact population persistence and biodiversity. We focused on bird and mammalian species in Europe as a case study. First, we developed a predictive model of roadkill rates based on diverse species traits which allowed us to predict rates for all European terrestrial bird and mammal species and to map the potential incidence of roadkills. We fitted trait-based random forest regression models separately for birds and mammals to explain empirical roadkill rates. We used all available roadkill rates and the following predictors: species trait data, multiple characteristics of the study (latitude and longitude and survey interval) to account for species abundance and detectability, and taxonomic order to account for evolutionary relationships. Second, we used a generalized population model to estimate long-term vulnerability to road mortality. We estimated ~194 million birds and ~29 million mammals may be killed each year on the European road network. Overall, species with higher roadkill rates differ from those in which roadkill is likely to affect long-term persistence. Simplified models of species traits and wildlife-roads interactions at a macro scale allow a first assessment of the road mortality on wildlife and implications on population’s persistence. This macroecological approach provide guidance for national road planning, support the definition of target areas for further testing at a finer-scale resolution, and ultimately prioritize site-specific areas where mitigation would be most beneficial.

  10. B

    International Cigarette Consumption Database v1.3

    • borealisdata.ca
    • search.dataone.org
    Updated Apr 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathieu JP Poirier; G Emmanuel Guindon; Lathika Sritharan; Steven J Hoffman (2022). International Cigarette Consumption Database v1.3 [Dataset]. http://doi.org/10.5683/SP2/AOVUW7
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 21, 2022
    Dataset provided by
    Borealis
    Authors
    Mathieu JP Poirier; G Emmanuel Guindon; Lathika Sritharan; Steven J Hoffman
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.5683/SP2/AOVUW7https://borealisdata.ca/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.5683/SP2/AOVUW7

    Time period covered
    1970 - 2015
    Dataset funded by
    Research Council of Norway
    Canadian Institutes of Health Research
    Description

    This database contains tobacco consumption data from 1970-2015 collected through a systematic search coupled with consultation with country and subject-matter experts. Data quality appraisal was conducted by at least two research team members in duplicate, with greater weight given to official government sources. All data was standardized into units of cigarettes consumed and a detailed accounting of data quality and sourcing was prepared. Data was found for 82 of 214 countries for which searches for national cigarette consumption data were conducted, representing over 95% of global cigarette consumption and 85% of the world’s population. Cigarette consumption fell in most countries over the past three decades but trends in country specific consumption were highly variable. For example, China consumed 2.5 million metric tonnes (MMT) of cigarettes in 2013, more than Russia (0.36 MMT), the United States (0.28 MMT), Indonesia (0.28 MMT), Japan (0.20 MMT), and the next 35 highest consuming countries combined. The US and Japan achieved reductions of more than 0.1 MMT from a decade earlier, whereas Russian consumption plateaued, and Chinese and Indonesian consumption increased by 0.75 MMT and 0.1 MMT, respectively. These data generally concord with modelled country level data from the Institute for Health Metrics and Evaluation and have the additional advantage of not smoothing year-over-year discontinuities that are necessary for robust quasi-experimental impact evaluations. Before this study, publicly available data on cigarette consumption have been limited—either inappropriate for quasi-experimental impact evaluations (modelled data), held privately by companies (proprietary data), or widely dispersed across many national statistical agencies and research organisations (disaggregated data). This new dataset confirms that cigarette consumption has decreased in most countries over the past three decades, but that secular country specific consumption trends are highly variable. The findings underscore the need for more robust processes in data reporting, ideally built into international legal instruments or other mandated processes. To monitor the impact of the WHO Framework Convention on Tobacco Control and other tobacco control interventions, data on national tobacco production, trade, and sales should be routinely collected and openly reported. The first use of this database for a quasi-experimental impact evaluation of the WHO Framework Convention on Tobacco Control is: Hoffman SJ, Poirier MJP, Katwyk SRV, Baral P, Sritharan L. Impact of the WHO Framework Convention on Tobacco Control on global cigarette consumption: quasi-experimental evaluations using interrupted time series analysis and in-sample forecast event modelling. BMJ. 2019 Jun 19;365:l2287. doi: https://doi.org/10.1136/bmj.l2287 Another use of this database was to systematically code and classify longitudinal cigarette consumption trajectories in European countries since 1970 in: Poirier MJ, Lin G, Watson LK, Hoffman SJ. Classifying European cigarette consumption trajectories from 1970 to 2015. Tobacco Control. 2022 Jan. DOI: 10.1136/tobaccocontrol-2021-056627. Statement of Contributions: Conceived the study: GEG, SJH Identified multi-country datasets: GEG, MP Extracted data from multi-country datasets: MP Quality assessment of data: MP, GEG Selection of data for final analysis: MP, GEG Data cleaning and management: MP, GL Internet searches: MP (English, French, Spanish, Portuguese), GEG (English, French), MYS (Chinese), SKA (Persian), SFK (Arabic); AG, EG, BL, MM, YM, NN, EN, HR, KV, CW, and JW (English), GL (English) Identification of key informants: GEG, GP Project Management: LS, JM, MP, SJH, GEG Contacts with Statistical Agencies: MP, GEG, MYS, SKA, SFK, GP, BL, MM, YM, NN, HR, KV, JW, GL Contacts with key informants: GEG, MP, GP, MYS, GP Funding: GEG, SJH SJH: Hoffman, SJ; JM: Mammone J; SRVK: Rogers Van Katwyk, S; LS: Sritharan, L; MT: Tran, M; SAK: Al-Khateeb, S; AG: Grjibovski, A.; EG: Gunn, E; SKA: Kamali-Anaraki, S; BL: Li, B; MM: Mahendren, M; YM: Mansoor, Y; NN: Natt, N; EN: Nwokoro, E; HR: Randhawa, H; MYS: Yunju Song, M; KV: Vercammen, K; CW: Wang, C; JW: Woo, J; MJPP: Poirier, MJP; GEG: Guindon, EG; GP: Paraje, G; GL Gigi Lin Key informants who provided data: Corne van Walbeek (South Africa, Jamaica) Frank Chaloupka (US) Ayda Yurekli (Turkey) Dardo Curti (Uruguay) Bungon Ritthiphakdee (Thailand) Jakub Lobaszewski (Poland) Guillermo Paraje (Chile, Argentina) Key informants who provided useful insights: Carlos Manuel Guerrero López (Mexico) Muhammad Jami Husain (Bangladesh) Nigar Nargis (Bangladesh) Rijo M John (India) Evan Blecher (Nigeria, Indonesia, Philippines, South Africa) Yagya Karki (Nepal) Anne CK Quah (Malaysia) Nery Suarez Lugo (Cuba) Agencies providing assistance: Iranian Tobacco Co. Institut National de la Statistique (Tunisia) HM Revenue & Customs (UK) Eidgenössisches Finanzdepartement EFD/Département...

  11. b

    Zomerganzen - Summering geese management and population counts in Flanders,...

    • data.biodiversity.be
    Updated Aug 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Zomerganzen - Summering geese management and population counts in Flanders, Belgium - Dataset - Belgian biodiversity data portal [Dataset]. https://data.biodiversity.be/dataset/2b2bf993-fc91-4d29-ae0b-9940b97e3232
    Explore at:
    Dataset updated
    Aug 20, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Flanders, Belgium
    Description

    Zomerganzen - Summering geese management and population counts in Flanders, Belgium is a sampling event dataset published by the Research Institute for Nature and Forest (INBO). The dataset contains over 3,700 sampling events, carried out since 2009, mostly in the months June and July. The data are compiled from different summering geese related projects, but most data were collected through fieldwork within the framework of the EU co-funded Interreg projects INVEXO (http://www.invexo.eu) and RINSE (www.rinse-europe.eu). Since 2015, data collection is funded by INBO. The dataset includes close to 5,000 presence occurrences, as well as over 15,000 absence occurrences. The sampling protocol for the majority of the occurrences are simultaneous counts. Here, the number of individuals of different geese species in a fixed set of areas is determined. Counts are performed within the same weekend to avoid double counting. Simultaneous counts were organised yearly since 2008 and take place the first weekend after July 15, the best period for monitoring the summering population of geese. These counts are performed by professional INBO employees as well as experienced birdwatchers from Natuurpunt using a standardized field protocol. Data are recorded in a citizen science portal (http://waarnemingen.be/waarnemingen_projecten.php?project=231). However, The dataset also comprises opportunistic field observations from the same portal outside this period. Furthermore, data are derived from management actions, such as fertility reduction (egg shaking and pricking), the use of Larsen traps (for Egyptian goose), and the execution of moult captures. Here, the individuals in the dataset were actually removed from the environment. The aim of the data collection is management follow-up and evaluation. Consequently, caution is advised when using these data for trend analysis, distribution range calculation, niche modeling or other. Issues with the dataset can be reported at https://github.com/LifeWatchINBO/data-publication/tree/master/datasets/zomerganzen-events We strongly believe an open attitude is essential for tackling the IAS problem (Groom et al. 2015). To allow anyone to use this dataset, we have released the data to the public domain under a Creative Commons Zero waiver (http://creativecommons.org/publicdomain/zero/1.0/). We would appreciate it however if you read and follow these norms for data use (http://www.inbo.be/en/norms-for-data-use) and provide a link to the original dataset (https://doi.org/10.15468/a5ubtp) whenever possible. If you use these data for a scientific paper, please cite the dataset following the applicable citation norms and/or consider us for co-authorship. We are always interested to know how you have used or visualized the data, or to provide more information, so please contact us via the contact information provided in the metadata, opendata@inbo.be or https://twitter.com/LifeWatchINBO.

  12. H

    Social Stratification in Eastern Europe After 1989: General Population...

    • dataverse.harvard.edu
    Updated Jun 19, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ivan Szelenyi; Donald J. Treiman (2017). Social Stratification in Eastern Europe After 1989: General Population Survey (M653V1) [Dataset]. http://doi.org/10.7910/DVN/XYUDDX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 19, 2017
    Dataset provided by
    Harvard Dataverse
    Authors
    Ivan Szelenyi; Donald J. Treiman
    License

    https://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/XYUDDXhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.7910/DVN/XYUDDX

    Time period covered
    1948 - 1992
    Area covered
    Eastern Europe, Europe, Slovakia, Poland, Hungary, Czech Republic, Russian Federation, Bulgaria
    Dataset funded by
    National Grant Agency of the Czech Republic
    U.S. National Science Foundation
    Institute of Sociology and the Institute of Political Science of the Hungarian Academy of Sciences
    Grant Agency of the Academy of Sciences of the Czech Republic
    U.S. National Council for Soviet and Eastern European Research
    Dutch National Science Foundation
    Description

    As part of the project "Social Stratification in Eastern Europe after 1989," sample surveys were conducted in 1993 and 1994 in six countries: Bulgaria, the Czech Republic, Hungary, Poland, Russia, and Slovakia. Using a questionnaire common to all countries, national probability samples of approximately 5,000 members of the adult population were surveyed in five of the six countries in 1993; in Poland, due to the lack of local funds, the data collection was delayed until 1994 and the sample size was reduced to approximately 3,500. To permit analyses of special interest to urban geographers (the Dutch funding was provided by a study committee of the Dutch NSF consisting of sociologists and urban geographers), over-samples of the populations of Prague and Warsaw were surveyed, with the sample sizes sufficient to bring the sum of cases from the over-sample and the national sample in each country to approximately 1,500. (About 900 cases each are available for Budapest and Sofia, generated by the national sample design. Thus, a four city comparison of Eastern European capitals is feasible.) The design of the survey called for exactly comparable wording of questions, and variation in the response categories only where national variations in circumstances (e.g., different religious distributions) warranted it. Country teams were free to add local questions at the end of the questionnaire. To ensure such comparability, the questionnaire was translated into each local language and then back-translated into English; the back-translated versions were compared as a group by a multi-lingual team and discrepancies in wording corrected. Inevitably, despite our best intentions, minor variations crept into the questionnaire. These are identified at appropriate places in the Codebook. The local language questionnaires are shown in Appendix G (Vol. II). (Probability samples of about 1,000 members of the old elite and about 1,000 members of the new elite in each country except Slovakia were also surveyed, using a similar but not identical questionnaire. These surveys have a separate codebook, which may be found under the title "Social Stratification in Eastern Europe after 1989: Elite Survey".)

  13. B

    Bolivia BO: Net Official Flows from UN Agencies: UNFPA

    • ceicdata.com
    Updated Jul 15, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2010). Bolivia BO: Net Official Flows from UN Agencies: UNFPA [Dataset]. https://www.ceicdata.com/en/bolivia/defense-and-official-development-assistance/bo-net-official-flows-from-un-agencies-unfpa
    Explore at:
    Dataset updated
    Jul 15, 2010
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Bolivia
    Variables measured
    Operating Statement
    Description

    Bolivia BO: Net Official Flows from UN Agencies: UNFPA data was reported at 1.969 USD mn in 2022. This records an increase from the previous number of 1.873 USD mn for 2021. Bolivia BO: Net Official Flows from UN Agencies: UNFPA data is updated yearly, averaging 1.180 USD mn from Dec 1977 (Median) to 2022, with 44 observations. The data reached an all-time high of 3.200 USD mn in 2002 and a record low of 0.080 USD mn in 1987. Bolivia BO: Net Official Flows from UN Agencies: UNFPA data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Bolivia – Table BO.World Bank.WDI: Defense and Official Development Assistance. Net official flows from UN agencies are the net disbursements of total official flows from the UN agencies. Total official flows are the sum of Official Development Assistance (ODA) or official aid and Other Official Flows (OOF) and represent the total disbursements by the official sector at large to the recipient country. Net disbursements are gross disbursements of grants and loans minus repayments of principal on earlier loans. ODA consists of loans made on concessional terms (with a grant element of at least 25 percent, calculated at a rate of discount of 10 percent) and grants made to promote economic development and welfare in countries and territories in the DAC list of ODA recipients. Official aid refers to aid flows from official donors to countries and territories in part II of the DAC list of recipients: more advanced countries of Central and Eastern Europe, the countries of the former Soviet Union, and certain advanced developing countries and territories. Official aid is provided under terms and conditions similar to those for ODA. Part II of the DAC List was abolished in 2005. The collection of data on official aid and other resource flows to Part II countries ended with 2004 data. OOF are transactions by the official sector whose main objective is other than development-motivated, or, if development-motivated, whose grant element is below the 25 per cent threshold which would make them eligible to be recorded as ODA. The main classes of transactions included here are official export credits, official sector equity and portfolio investment, and debt reorganization undertaken by the official sector at nonconcessional terms (irrespective of the nature or the identity of the original creditor). UN agencies are United Nations includes the United Nations Children’s Fund (UNICEF), United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA), World Food Programme (WFP), International Fund for Agricultural Development (IFAD), United Nations Development Programme(UNDP), United Nations Population Fund (UNFPA), United Nations Refugee Agency (UNHCR), Joint United Nations Programme on HIV/AIDS (UNAIDS), United Nations Regular Programme for Technical Assistance (UNTA), United Nations Peacebuilding Fund (UNPBF), International Atomic Energy Agency (IAEA), World Health Organization (WHO), United Nations Economic Commission for Europe (UNECE), Food and Agriculture Organization of the United Nations (FAO), International Labour Organization (ILO), United Nations Environment Programme (UNEP), World Tourism Organization (UNWTO), United Nations Institute for Disarmament Research (UNIDIR), United Nations Capital Development Fund (UNCDF), WHO-Strategic Preparedness and Response Plan (SPRP), United Nations Women (UNWOMEN), Covid-19 Response and Recovery Multi-Partner Trust Fund (UNCOVID), Joint Sustainable Development Goals Fund (SDGFUND), Central Emergency Response Fund (CERF), WTO-International Trade Centre (WTO-ITC), United National Conference on Trade and Development (UNCTAD), and United Nations Industrial Development Organization (UNIDO). Data are in current U.S. dollars.;Development Assistance Committee of the Organisation for Economic Co-operation and Development, Geographical Distribution of Financial Flows to Developing Countries, Development Co-operation Report, and International Development Statistics database. Data are available online at: https://data-explorer.oecd.org/.;Sum;

  14. d

    Vision Consumer Demographic Data | B2C Audience Purchase Behavior | US...

    • datarade.ai
    .csv, .xls
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge, Vision Consumer Demographic Data | B2C Audience Purchase Behavior | US Transaction Data | 100M+ Cards, 12K+ Merchants, Industry, Channel [Dataset]. https://datarade.ai/data-products/consumer-edge-vision-demographic-spending-data-b2c-audience-consumer-edge
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset authored and provided by
    Consumer Edge
    Area covered
    United States
    Description

    Demographics Analysis with Consumer Edge Credit & Debit Card Transaction Data

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. CE Transact Signal is an aggregated transaction feed that includes consumer transaction data on 100M+ credit and debit cards, including 14M+ active monthly users. Capturing online, offline, and 3rd-party consumer spending on public and private companies, data covers 12K+ merchants and deep demographic and geographic breakouts. Track detailed consumer behavior patterns, including retention, purchase frequency, and cross shop in addition to total spend, transactions, and dollars per transaction.

    Consumer Edge’s consumer transaction datasets offer insights into industries across consumer and discretionary spend such as: • Apparel, Accessories, & Footwear • Automotive • Beauty • Commercial – Hardlines • Convenience / Drug / Diet • Department Stores • Discount / Club • Education • Electronics / Software • Financial Services • Full-Service Restaurants • Grocery • Ground Transportation • Health Products & Services • Home & Garden • Insurance • Leisure & Recreation • Limited-Service Restaurants • Luxury • Miscellaneous Services • Online Retail – Broadlines • Other Specialty Retail • Pet Products & Services • Sporting Goods, Hobby, Toy & Game • Telecom & Media • Travel

    This data sample illustrates how Consumer Edge data can be used to compare demographics breakdown (age and income excluded in this free sample view) for one company vs. a competitor for a set period of time (Ex: How do demographics like wealth, ethnicity, children in the household, homeowner status, and political affiliation differ for Walmart vs. Target shopper?).

    Inquire about a CE subscription to perform more complex, near real-time demographics analysis functions on public tickers and private brands like: • Analyze a demographic, like age or income, within a state for a company in 2023 • Compare all of a company’s demographics to all of that company’s competitors through most recent history

    Consumer Edge offers a variety of datasets covering the US and Europe (UK, Austria, France, Germany, Italy, Spain), with subscription options serving a wide range of business needs.

    Use Case: Demographics Analysis

    Problem A global retailer wants to understand company performance by age group.

    Solution Consumer Edge transaction data can be used to analyze shopper transactions by age group to understand: • Overall sales growth by age group over time • Percentage sales growth by age group over time • Sales by age group vs. competitors

    Impact Marketing and Consumer Insights were able to: • Develop weekly reporting KPI's on key demographic drivers of growth for company-wide reporting • Reduce investment in underperforming age groups, both online and offline • Determine retention by age group to refine campaign strategy • Understand how different age groups are performing compared to key competitors

    Corporate researchers and consumer insights teams use CE Vision for:

    Corporate Strategy Use Cases • Ecommerce vs. brick & mortar trends • Real estate opportunities • Economic spending shifts

    Marketing & Consumer Insights • Total addressable market view • Competitive threats & opportunities • Cross-shopping trends for new partnerships • Demo and geo growth drivers • Customer loyalty & retention

    Investor Relations • Shareholder perspective on brand vs. competition • Real-time market intelligence • M&A opportunities

    Most popular use cases for private equity and venture capital firms include: • Deal Sourcing • Live Diligences • Portfolio Monitoring

    Public and private investors can leverage insights from CE’s synthetic data to assess investment opportunities, while consumer insights, marketing, and retailers can gain visibility into transaction data’s potential for competitive analysis, understanding shopper behavior, and capturing market intelligence.

    Most popular use cases among public and private investors include: • Track Key KPIs to Company-Reported Figures • Understanding TAM for Focus Industries • Competitive Analysis • Evaluating Public, Private, and Soon-to-be-Public Companies • Ability to Explore Geographic & Regional Differences • Cross-Shop & Loyalty • Drill Down to SKU Level & Full Purchase Details • Customer lifetime value • Earnings predictions • Uncovering macroeconomic trends • Analyzing market share • Performance benchmarking • Understanding share of wallet • Seeing subscription trends

    Fields Include: • Day • Merchant • Subindustry • Industry • Spend • Transactions • Spend per Transaction (derivable) • Cardholder State • Cardholder CBSA • Cardholder CSA • Age • Income • Wealth • Ethnicity • Political Affiliation • Children in Household • Adults in Household • Homeowner vs. Renter • Business Owner • Retention by First-Shopped Period ...

  15. YouTube users in Europe 2020-2029

    • statista.com
    Updated Sep 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). YouTube users in Europe 2020-2029 [Dataset]. https://www.statista.com/topics/3853/internet-usage-in-europe/
    Explore at:
    Dataset updated
    Sep 10, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Europe
    Description

    The number of Youtube users in Europe was forecast to continuously increase between 2024 and 2029 by in total 7.8 million users (+3.61 percent). After the ninth consecutive increasing year, the Youtube user base is estimated to reach 223.61 million users and therefore a new peak in 2029. Notably, the number of Youtube users of was continuously increasing over the past years.User figures, shown here regarding the platform youtube, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Youtube users in countries like North America and Australia & Oceania.

  16. d

    (Non-) Involvement in Terrorist Violence Dataset (NITV)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Jan 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schuurman, Bart; Carthy, Sarah L. (2024). (Non-) Involvement in Terrorist Violence Dataset (NITV) [Dataset]. http://doi.org/10.7910/DVN/NJX5BV
    Explore at:
    Dataset updated
    Jan 10, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Schuurman, Bart; Carthy, Sarah L.
    Description

    This dataset describes 206 individuals who radicalised to extremism. Exactly half of the sample (N=103) radicalised to right-wing extremism, and half to jihadism. The sample is also split 50/50 in terms of the outcome of these radicalization processes: 103 individuals became involved in the planning, preparation or execution of terrorist attacks, the other 103 did not. The purpose of our dataset was to gain insights into what variables influence these outcome differences. To that end, we used a codebook to look at structural, group and individual-level variables theorised to influence the onset and outcome of radicalization processes. The dataset describes individuals from Europe and North-America (Canada / US) with an average date of birth of 1980. Data on our population was gathered from a range of sources, such as secondary literature (e.g. academic publications, think-tank reports), journalistic accounts, court records, (auto)biographies and, where possible, privileged information drawn from semi-structured interviews and material provided by the Dutch public prosecution service. To ensure their privacy and security, all personally-identifying information has been rigorously removed. This means that no data on names, exact dates of birth, places of residence etc. is included in the dataset. All interviewees were asked to sign consent forms and the project went through formal ethics approval by Leiden University's Faculty of Governance and Global Affairs (FGGA) Ethics Committee (ref: 2019-012-ISGA-Schuurman) before it commenced.

  17. b

    Oies d’été — Summering Geese management and population counts in Flanders,...

    • ldf.belgif.be
    Updated Apr 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Oies d’été — Summering Geese management and population counts in Flanders, Belgique [Dataset]. https://ldf.belgif.be/datagovbe?subject=https%3A%2F%2Fipt.inbo.be%2Fresource%3Fr%3Dzomerganzen-events%23Dataset
    Explore at:
    Dataset updated
    Apr 12, 2021
    Area covered
    Flanders, Belgium
    Variables measured
    http://publications.europa.eu/resource/authority/data-theme/AGRI, http://publications.europa.eu/resource/authority/data-theme/ENVI
    Description

    Summer geese – Summering Geese management and population counts in Flanders, Belgium is a sampling event dataset published by the Research Institute for Nature and Forest (INBO). The dataset containers on 3,700 sampling events, carried out as of 2009, mostly in the months June and July. The data are compiled from different summation Geese related projects, but most data were collected through fieldwork within the framework of the EU co-funded Interreg projects INVEXO (http://www.invexo.eu) and Rinse (www.rinse-europe.eu). Since 2015, data collection is funded by INBO. The dataset including close to 5,000 presence occurrences, as well as over 15,000 absences. The sampling protocol for the majority of the occurrences are simultaneous counts. Here, the number of individuals of different Geese species in a fixed set of areas is determined. Counts are performed within the same weekend to avoid double counselling. Simultaneous counts were organised yearly since 2008 and take place the first weekend after July 15, the best period for monitoring the summation population of Geese. These counts are performed by professional INBO employees as well as experimented birdwatchers from Natuurpunt using a standardised field protocol. Data are recorded in a citizen science portal (http://waarnemingen.be/waarnemingen_projecten.php?project=231). However, The dataset also comprises opportunistic field observations from the same portal outside this period. Furthermore, data are derived from management actions, such as fertility reduction (egg Shaking and pricking), the use of Larsen traps (for Egyptian goose), and the execution of Moult captures. Here, the individuals in the dataset had been effectively removed from the environment. The aim of the data collection is management follow-up and evaluation. Consequently, caution is used when using this data for trend analysis, distribution range calculation, niche modeling or other. Issues with the dataset can be reported at https://github.com/LifeWatchINBO/data-publication/tree/master/datasets/zomerganzen-events We strongly choose an open attitude is essential for tackling the IAS problem (Groom et al. 2015). To allow anyone to use this dataset, we have been released the data to the public domain under a Creative Commons Zero waiver (http://creativecommons.org/publicdomain/zero/1.0/). We would appreciate it however if you read and follow these norms for data use (http://www.inbo.be/en/norms-for-data-use) and provide a link to the original dataset (https://doi.org/10.15468/a5ubtp) if you read and follow these norms for data use where possible. If you use this data for a scientific paper, please cite the dataset following the applicable citation norms and/or for co-authorship. We are interested to know how you have used or visualised the data, or to provide more information, so please contact us via the contact information provided in the metadata, opendata@inbo.be or https://twitter.com/LifeWatchINBO.

  18. a

    RTB Mapping application

    • hub.arcgis.com
    • data.amerigeoss.org
    Updated Aug 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). RTB Mapping application [Dataset]. https://hub.arcgis.com/datasets/81ea77e8b5274b879b9d71010d8743aa
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.

  19. g

    Morphology and genetics of Lythrum salicaria from latitudinal gradients of...

    • gimi9.com
    Updated Dec 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Morphology and genetics of Lythrum salicaria from latitudinal gradients of the Northern Hemisphere grown in cold and hot common gardens | gimi9.com [Dataset]. https://www.gimi9.com/dataset/data-gov_morphology-and-genetics-of-lythrum-salicaria-from-latitudinal-gradients-of-the-northern-he/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    Genetic diversity may promote a plant species’ invasiveness by facilitating the evolution of local adaptation, enhanced competitive abilities, and phenotypic plasticity. We examined the possible role of genetic diversity in the invasiveness of purple loosestrife, Lythrum salicaria L., a Eurasian native introduced to North America, through a broad geographic comparison of eight populations, four from Europe and four from North America. We further cultivated these populations in two common gardens varying by nearly 20 degrees of latitude to evaluate whether invasive populations exhibit heightened growth/reproductive capabilities and/or phenotypic plasticity when faced with widely varying environmental conditions. We found similar levels of genetic diversity regardless of continent of origin, indicating no loss of adaptive potential during the North American invasion, along with more rapid first-year growth of invasive populations regardless of garden. Further, we found evidence that our source populations had adapted to their respective latitudes on both continents, as plant size decreased with increases in a population’s latitude of origin. We observed no difference between continents in phenotypic plasticity in response to the widely varying conditions affecting our two gardens, suggesting either that such plasticity has played little role in the latitudinal spread of L. salicaria in North America, or that local selection has erased it over time. Our results support earlier studies demonstrating the evolution of local adaptation and increased competitiveness in invasive L. salicaria, bolstered by high levels of genetic diversity.

  20. S

    Somalia SO: Net Official Flows from UN Agencies: UNICEF

    • ceicdata.com
    Updated Jan 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). Somalia SO: Net Official Flows from UN Agencies: UNICEF [Dataset]. https://www.ceicdata.com/en/somalia/defense-and-official-development-assistance/so-net-official-flows-from-un-agencies-unicef
    Explore at:
    Dataset updated
    Jan 21, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Somalia
    Description

    Somalia SO: Net Official Flows from UN Agencies: UNICEF data was reported at 18.420 USD mn in 2016. This records an increase from the previous number of 15.970 USD mn for 2015. Somalia SO: Net Official Flows from UN Agencies: UNICEF data is updated yearly, averaging 4.750 USD mn from Dec 1970 (Median) to 2016, with 47 observations. The data reached an all-time high of 31.780 USD mn in 1993 and a record low of 0.170 USD mn in 1971. Somalia SO: Net Official Flows from UN Agencies: UNICEF data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Somalia – Table SO.World Bank: Defense and Official Development Assistance. Net official flows from UN agencies are the net disbursements of total official flows from the UN agencies. Total official flows are the sum of Official Development Assistance (ODA) or official aid and Other Official Flows (OOF) and represent the total disbursements by the official sector at large to the recipient country. Net disbursements are gross disbursements of grants and loans minus repayments of principal on earlier loans. ODA consists of loans made on concessional terms (with a grant element of at least 25 percent, calculated at a rate of discount of 10 percent) and grants made to promote economic development and welfare in countries and territories in the DAC list of ODA recipients. Official aid refers to aid flows from official donors to countries and territories in part II of the DAC list of recipients: more advanced countries of Central and Eastern Europe, the countries of the former Soviet Union, and certain advanced developing countries and territories. Official aid is provided under terms and conditions similar to those for ODA. Part II of the DAC List was abolished in 2005. The collection of data on official aid and other resource flows to Part II countries ended with 2004 data. OOF are transactions by the official sector whose main objective is other than development-motivated, or, if development-motivated, whose grant element is below the 25 per cent threshold which would make them eligible to be recorded as ODA. The main classes of transactions included here are official export credits, official sector equity and portfolio investment, and debt reorganization undertaken by the official sector at nonconcessional terms (irrespective of the nature or the identity of the original creditor).). UN agencies are United Nations includes the United Nations Children’s Fund (UNICEF), United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA), World Food Programme (WFP), International Fund for Agricultural Development (IFAD), United Nations Development Programme(UNDP), United Nations Population Fund (UNFPA), United Nations Refugee Agency (UNHCR), Joint United Nations Programme on HIV/AIDS (UNAIDS), United Nations Regular Programme for Technical Assistance (UNTA), , United Nations Peacebuilding Fund (UNPBF), International Atomic Energy Agency (IAEA), Wolrd Health Organization (WHO), United Nations Economic Commission for Europe (UNECE), Food and Agriculture Organization of the United Nations (FAO), and International Labour Organization (ILO). Data are in current U.S. dollars.; ; Development Assistance Committee of the Organisation for Economic Co-operation and Development, Geographical Distribution of Financial Flows to Developing Countries, Development Co-operation Report, and International Development Statistics database. Data are available online at: www.oecd.org/dac/stats/idsonline.; Sum;

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Population of the United States 1610-2020 [Dataset]. https://www.statista.com/statistics/1067138/population-united-states-historical/
Organization logo

Population of the United States 1610-2020

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 12, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).

Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.

Search
Clear search
Close search
Google apps
Main menu