4 datasets found
  1. Z

    Base rates of food safety practices in European households: Summary data...

    • data.niaid.nih.gov
    Updated Nov 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scholderer, Joachim (2022). Base rates of food safety practices in European households: Summary data from the SafeConsume Household Survey [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7264924
    Explore at:
    Dataset updated
    Nov 4, 2022
    Dataset provided by
    University of Zurich
    Authors
    Scholderer, Joachim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data set contains estimates of the base rates of 550 food safety-relevant food handling practices in European households. The data are representative for the population of private households in the ten European countries in which the SafeConsume Household Survey was conducted (Denmark, France, Germany, Greece, Hungary, Norway, Portugal, Romania, Spain, UK).

    Sampling design

    In each of the ten EU and EEA countries where the survey was conducted (Denmark, France, Germany, Greece, Hungary, Norway, Portugal, Romania, Spain, UK), the population under study was defined as the private households in the country. Sampling was based on a stratified random design, with the NUTS2 statistical regions of Europe and the education level of the target respondent as stratum variables. The target sample size was 1000 households per country, with selection probability within each country proportional to stratum size.

    Fieldwork

    The fieldwork was conducted between December 2018 and April 2019 in ten EU and EEA countries (Denmark, France, Germany, Greece, Hungary, Norway, Portugal, Romania, Spain, United Kingdom). The target respondent in each household was the person with main or shared responsibility for food shopping in the household. The fieldwork was sub-contracted to a professional research provider (Dynata, formerly Research Now SSI). Complete responses were obtained from altogether 9996 households.

    Weights

    In addition to the SafeConsume Household Survey data, population data from Eurostat (2019) were used to calculate weights. These were calculated with NUTS2 region as the stratification variable and assigned an influence to each observation in each stratum that was proportional to how many households in the population stratum a household in the sample stratum represented. The weights were used in the estimation of all base rates included in the data set.

    Transformations

    All survey variables were normalised to the [0,1] range before the analysis. Responses to food frequency questions were transformed into the proportion of all meals consumed during a year where the meal contained the respective food item. Responses to questions with 11-point Juster probability scales as the response format were transformed into numerical probabilities. Responses to questions with time (hours, days, weeks) or temperature (C) as response formats were discretised using supervised binning. The thresholds best separating between the bins were chosen on the basis of five-fold cross-validated decision trees. The binned versions of these variables, and all other input variables with multiple categorical response options (either with a check-all-that-apply or forced-choice response format) were transformed into sets of binary features, with a value 1 assigned if the respective response option had been checked, 0 otherwise.

    Treatment of missing values

    In many cases, a missing value on a feature logically implies that the respective data point should have a value of zero. If, for example, a participant in the SafeConsume Household Survey had indicated that a particular food was not consumed in their household, the participant was not presented with any other questions related to that food, which automatically results in missing values on all features representing the responses to the skipped questions. However, zero consumption would also imply a zero probability that the respective food is consumed undercooked. In such cases, missing values were replaced with a value of 0.

  2. European Union Statistics on Income and Living Conditions 2011 -...

    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2019). European Union Statistics on Income and Living Conditions 2011 - Cross-Sectional User Database - Romania [Dataset]. https://catalog.ihsn.org/index.php/catalog/5769
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    Time period covered
    2011
    Area covered
    Romania
    Description

    Abstract

    In 2011, the EU-SILC instrument covered all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.

    There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.

    Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.

    The 5th version 2011 Cross-Sectional User Database as released in July 2015 is documented here.

    Geographic coverage

    The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland

    Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United Kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.

    Analysis unit

    • Households;
    • Individuals 16 years and older.

    Universe

    The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.

    For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.

    Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.

    The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.

    At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.

    According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:

    1. For all components of EU-SILC (whether survey or register based), the crosssectional and longitudinal (initial sample) data shall be based on a nationally representative probability sample of the population residing in private households within the country, irrespective of language, nationality or legal residence status. All private households and all persons aged 16 and over within the household are eligible for the operation.
    2. Representative probability samples shall be achieved both for households, which form the basic units of sampling, data collection and data analysis, and for individual persons in the target population.
    3. The sampling frame and methods of sample selection shall ensure that every individual and household in the target population is assigned a known and non-zero probability of selection.
    4. By way of exception, paragraphs 1 to 3 shall apply in Germany exclusively to the part of the sample based on probability sampling according to Article 8 of the Regulation of the European Parliament and of the Council (EC) No 1177/2003 concerning

    Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.

    Detailed information about sampling is available in Quality Reports in Related Materials.

    Mode of data collection

    Mixed

  3. k

    International Macroeconomic Dataset (2015 Base)

    • datasource.kapsarc.org
    Updated Oct 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). International Macroeconomic Dataset (2015 Base) [Dataset]. https://datasource.kapsarc.org/explore/dataset/international-macroeconomic-data-set-2015/
    Explore at:
    Dataset updated
    Oct 26, 2025
    Description

    TThe ERS International Macroeconomic Data Set provides historical and projected data for 181 countries that account for more than 99 percent of the world economy. These data and projections are assembled explicitly to serve as underlying assumptions for the annual USDA agricultural supply and demand projections, which provide a 10-year outlook on U.S. and global agriculture. The macroeconomic projections describe the long-term, 10-year scenario that is used as a benchmark for analyzing the impacts of alternative scenarios and macroeconomic shocks.

    Explore the International Macroeconomic Data Set 2015 for annual growth rates, consumer price indices, real GDP per capita, exchange rates, and more. Get detailed projections and forecasts for countries worldwide.

    Annual growth rates, Consumer price indices (CPI), Real GDP per capita, Real exchange rates, Population, GDP deflator, Real gross domestic product (GDP), Real GDP shares, GDP, projections, Forecast, Real Estate, Per capita, Deflator, share, Exchange Rates, CPI

    Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burundi, Côte d'Ivoire, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Congo, Costa Rica, Croatia, Cuba, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Samoa, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, South Africa, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Tajikistan, Tanzania, Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe, WORLD Follow data.kapsarc.org for timely data to advance energy economics research. Notes:

    Developed countries/1 Australia, New Zealand, Japan, Other Western Europe, European Union 27, North America

    Developed countries less USA/2 Australia, New Zealand, Japan, Other Western Europe, European Union 27, Canada

    Developing countries/3 Africa, Middle East, Other Oceania, Asia less Japan, Latin America;

    Low-income developing countries/4 Haiti, Afghanistan, Nepal, Benin, Burkina Faso, Burundi, Central African Republic, Chad, Democratic Republic of Congo, Eritrea, Ethiopia, Gambia, Guinea, Guinea-Bissau, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Rwanda, Senegal, Sierra Leone, Somalia, Tanzania, Togo, Uganda, Zimbabwe;

    Emerging markets/5 Mexico, Brazil, Chile, Czech Republic, Hungary, Poland, Slovakia, Russia, China, India, Korea, Taiwan, Indonesia, Malaysia, Philippines, Thailand, Vietnam, Singapore

    BRIICs/5 Brazil, Russia, India, Indonesia, China; Former Centrally Planned Economies

    Former centrally planned economies/7 Cyprus, Malta, Recently acceded countries, Other Central Europe, Former Soviet Union

    USMCA/8 Canada, Mexico, United States

    Europe and Central Asia/9 Europe, Former Soviet Union

    Middle East and North Africa/10 Middle East and North Africa

    Other Southeast Asia outlook/11 Malaysia, Philippines, Thailand, Vietnam

    Other South America outlook/12 Chile, Colombia, Peru, Bolivia, Paraguay, Uruguay

    Indicator Source

    Real gross domestic product (GDP) World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service all converted to a 2015 base year.

    Real GDP per capita U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table and Population table.

    GDP deflator World Bank World Development Indicators, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.

    Real GDP shares U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, GDP table.

    Real exchange rates U.S. Department of Agriculture, Economic Research Service, Macroeconomic Data Set, CPI table, and Nominal XR and Trade Weights tables developed by the Economic Research Service.

    Consumer price indices (CPI) International Financial Statistics International Monetary Fund, IHS Global Insight, Oxford Economics Forecasting, as well as estimated and projected values developed by the Economic Research Service, all converted to a 2015 base year.

    Population Department of Commerce, Bureau of the Census, U.S. Department of Agriculture, Economic Research Service, International Data Base.

  4. European Union Statistics on Income and Living Conditions 2008 -...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2019). European Union Statistics on Income and Living Conditions 2008 - Cross-Sectional User Database - Romania [Dataset]. https://catalog.ihsn.org/index.php/catalog/5766
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    Time period covered
    2008
    Area covered
    Romania
    Description

    Abstract

    EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.

    There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.

    Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.

    The 7th version of the 2008 Cross-Sectional User Database (UDB) as released in July 2015 is documented here.

    Geographic coverage

    The survey covers following countries: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, United Kingdom, Iceland, Norway.

    Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.

    Analysis unit

    • Households;
    • Individuals 16 years and older.

    Universe

    The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.

    For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.

    Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.

    The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.

    At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.

    According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:

    1. For all components of EU-SILC (whether survey or register based), the cross-sectional and longitudinal (initial sample) data shall be based on a nationally representative probability sample of the population residing in private households within the country, irrespective of language, nationality or legal residence status. All private households and all persons aged 16 and over within the household are eligible for the operation.
    2. Representative probability samples shall be achieved both for households, which form the basic units of sampling, data collection and data analysis, and for individual persons in the target population.
    3. The sampling frame and methods of sample selection shall ensure that every individual and household in the target population is assigned a known and non-zero probability of selection.
    4. By way of exception, paragraphs 1 to 3 shall apply in Germany exclusively to the part of the sample based on probability sampling according to Article 8 of the Regulation of the European Parliament and of the Council (EC) No 1177/2003 concerning

    Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.

    Detailed information about sampling is available in Quality Reports in Related Materials.

    Mode of data collection

    Mixed

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Scholderer, Joachim (2022). Base rates of food safety practices in European households: Summary data from the SafeConsume Household Survey [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7264924

Base rates of food safety practices in European households: Summary data from the SafeConsume Household Survey

Explore at:
Dataset updated
Nov 4, 2022
Dataset provided by
University of Zurich
Authors
Scholderer, Joachim
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This data set contains estimates of the base rates of 550 food safety-relevant food handling practices in European households. The data are representative for the population of private households in the ten European countries in which the SafeConsume Household Survey was conducted (Denmark, France, Germany, Greece, Hungary, Norway, Portugal, Romania, Spain, UK).

Sampling design

In each of the ten EU and EEA countries where the survey was conducted (Denmark, France, Germany, Greece, Hungary, Norway, Portugal, Romania, Spain, UK), the population under study was defined as the private households in the country. Sampling was based on a stratified random design, with the NUTS2 statistical regions of Europe and the education level of the target respondent as stratum variables. The target sample size was 1000 households per country, with selection probability within each country proportional to stratum size.

Fieldwork

The fieldwork was conducted between December 2018 and April 2019 in ten EU and EEA countries (Denmark, France, Germany, Greece, Hungary, Norway, Portugal, Romania, Spain, United Kingdom). The target respondent in each household was the person with main or shared responsibility for food shopping in the household. The fieldwork was sub-contracted to a professional research provider (Dynata, formerly Research Now SSI). Complete responses were obtained from altogether 9996 households.

Weights

In addition to the SafeConsume Household Survey data, population data from Eurostat (2019) were used to calculate weights. These were calculated with NUTS2 region as the stratification variable and assigned an influence to each observation in each stratum that was proportional to how many households in the population stratum a household in the sample stratum represented. The weights were used in the estimation of all base rates included in the data set.

Transformations

All survey variables were normalised to the [0,1] range before the analysis. Responses to food frequency questions were transformed into the proportion of all meals consumed during a year where the meal contained the respective food item. Responses to questions with 11-point Juster probability scales as the response format were transformed into numerical probabilities. Responses to questions with time (hours, days, weeks) or temperature (C) as response formats were discretised using supervised binning. The thresholds best separating between the bins were chosen on the basis of five-fold cross-validated decision trees. The binned versions of these variables, and all other input variables with multiple categorical response options (either with a check-all-that-apply or forced-choice response format) were transformed into sets of binary features, with a value 1 assigned if the respective response option had been checked, 0 otherwise.

Treatment of missing values

In many cases, a missing value on a feature logically implies that the respective data point should have a value of zero. If, for example, a participant in the SafeConsume Household Survey had indicated that a particular food was not consumed in their household, the participant was not presented with any other questions related to that food, which automatically results in missing values on all features representing the responses to the skipped questions. However, zero consumption would also imply a zero probability that the respective food is consumed undercooked. In such cases, missing values were replaced with a value of 0.

Search
Clear search
Close search
Google apps
Main menu