Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the state of New York from 1900 to 2024.
Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.
Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.
Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Syracuse metro area from 1950 to 2025.
My ArcGIS StoryMap is centered around The Green Book, an annual travel guide that allowed African Americans to travel safely during the height of the Jim Crow Era in the United States. More specifically, The Green Book listed establishments, such as hotels and restaurants, that would openly accept and welcome black customers into their businesses. As someone who is interested in the intersection between STEM and the humanities, I wanted to utilize The Science of Where to formulate a project that would reveal important historical implications to the public. Therefore, my overarching goal was to map each location in The Green Book in order to draw significant conclusions regarding racial segregation in one of the largest cities in the entire world.Although a more detailed methodology of my work can be found in the project itself, the following is a step by step walkthrough of my overall scientific process:Develop a question in relation to The Green Book to be solved through the completion of the project.Perform background research on The Green Book to gain a more comprehensive understanding of the subject matter.Formulate a hypothesis that answers the proposed question based on the background research.Transcribe names and addresses for each of the hotel listings in The Green Book into a comma separated values file.Transcribe names and addresses for each of the restaurants listings in The Green Book into a comma separated values file.Repeat Steps 4 and 5 for the 1940, 1950, 1960, and 1966 publications of The Green Book. In total, there should be eight unique database files (1940 New York City Hotels, 1940 New York City Restaurants, 1950 New York City Hotels, 1950 New York City Restaurants, 1960 New York City Hotels, 1960 New York City Restaurants, 1966 New York City Hotels, and 1966 New York City Restaurants.)Construct an address locator that references a New York City street base map to plot the information from the databases in Step 6 as points on a map.Manually plot locations that the address locator did not automatically match on the map.Repeat Steps 7 and 8 for all eight database files.Find and match the point locations for each listing in The Green Book with historical photographs.Generate a map tour using the geotagged images for each point from Step 10.Create a point density heat map for the locations in all eight database files.Research and obtain professional and historically accurate racial demographic data for New York City during the same time period as when The Green Book was published.Generate a hot spot map of the black population percentage using the demographic data.Analyze any geospatial trends between the point density heat maps for The Green Book and the black population percentage hot spot maps from the demographic data.Research and obtain professional and historically accurate redlining data for New York City during the same time period as when The Green Book was published.Overlay the points from The Green Book listings from Step 9 on top of the redlining shapefile.Count the number of point features completely located within each redlining zone ranking utilizing the spatial join tool.Plot the data recorded from Step 18 in the form of graphs.Analyze any geospatial trends between the listings for The Green Book and its location relative to the redlining ranking zones.Draw conclusions from the analyses in Steps 15 and 20 to present a justifiable rationale for the results._Student Generated Maps:New York City Pin Location Maphttps://arcg.is/15i4nj1940 New York City Hotels Maphttps://arcg.is/WuXeq1940 New York City Restaurants Maphttps://arcg.is/L4aqq1950 New York City Hotels Maphttps://arcg.is/1CvTGj1950 New York City Restaurants Maphttps://arcg.is/0iSG4r1960 New York City Hotels Maphttps://arcg.is/1DOzeT1960 New York City Restaurants Maphttps://arcg.is/1rWKTj1966 New York City Hotels Maphttps://arcg.is/4PjOK1966 New York City Restaurants Maphttps://arcg.is/1zyDTv11930s Manhattan Black Population Percentage Enumeration District Maphttps://arcg.is/1rKSzz1930s Manhattan Black Population Percentage Hot Spot Map (Same as Previous)https://arcg.is/1rKSzz1940 Hotels Point Density Heat Maphttps://arcg.is/jD1Ki1940 Restaurants Point Density Heat Maphttps://arcg.is/1aKbTS1940 Hotels Redlining Maphttps://arcg.is/8b10y1940 Restaurants Redlining Maphttps://arcg.is/9WrXv1950 Hotels Redlining Maphttps://arcg.is/ruGiP1950 Restaurants Redlining Maphttps://arcg.is/0qzfvC01960 Hotels Redlining Maphttps://arcg.is/1KTHLK01960 Restaurants Redlining Maphttps://arcg.is/0jiu9q1966 Hotels Redlining Maphttps://arcg.is/PXKn41966 Restaurants Redlining Maphttps://arcg.is/uCD05_Bibliography:Image Credits (In Order of Appearance)Header/Thumbnail Image:Student Generated Collage (Created Using Pictures from the Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library, https://digitalcollections.nypl.org/collections/the-green-book#/?tab=about.)Mob Violence Image:Kelley, Robert W. “A Mob Rocks an out of State Car Passing.” Life Magazine, www.life.com/history/school-integration-clinton-history, The Green Book Example Image:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library Digital Collections, https://images.nypl.org/index.php?id=5207583&t=w. 1940s Borough of Manhattan Hotels and Restaurants Photographs:“Manhattan 1940s Tax Photos.” NYC Municipal Archives Collections, The New York City Department of Records & Information Services, https://nycma.lunaimaging.com/luna/servlet/NYCMA~5~5?cic=NYCMA~5~5.Figure 1:Student Generated GraphFigure 2:Student Generated GraphFigure 3:Student Generated GraphGIS DataThe Green Book Database:Student Generated (See Above)The Green Book Listings Maps:Student Generated (See Above)The Green Book Point Density Heat Maps:Student Generated (See Above)The Green Book Road Trip Map:Student GeneratedLION New York City Single Line Street Base Map:https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-lion.page 1930s Manhattan Census Data:https://s4.ad.brown.edu/Projects/UTP2/ncities.htm Mapping Inequality Redlining Data:https://dsl.richmond.edu/panorama/redlining/#loc=12/40.794/-74.072&city=manhattan-ny&text=downloads 1940 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "The Negro Motorist Green-Book: 1940" The New York Public Library Digital Collections, 1940, https://digitalcollections.nypl.org/items/dc858e50-83d3-0132-2266-58d385a7b928. 1950 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "The Negro Motorist Green-Book: 1950" The New York Public Library Digital Collections, 1950, https://digitalcollections.nypl.org/items/283a7180-87c6-0132-13e6-58d385a7b928. 1960 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "The Travelers' Green Book: 1960" The New York Public Library Digital Collections, 1960, https://digitalcollections.nypl.org/items/a7bf74e0-9427-0132-17bf-58d385a7b928. 1966 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "Travelers' Green Book: 1966-67 International Edition" The New York Public Library Digital Collections, 1966, https://digitalcollections.nypl.org/items/27516920-8308-0132-5063-58d385a7bbd0. Hyperlink Credits (In Order of Appearance)Referenced Hyperlink #1: Coen, Ross. “Sundown Towns.” Black Past, 23 Aug. 2020, blackpast.org/african-american-history/sundown-towns.Referenced Hyperlink #2: Foster, Mark S. “In the Face of ‘Jim Crow’: Prosperous Blacks and Vacations, Travel and Outdoor Leisure, 1890-1945.” The Journal of Negro History, vol. 84, no. 2, 1999, pp. 130–149., doi:10.2307/2649043. Referenced Hyperlink #3:Driskell, Jay. “An Atlas of Self-Reliance: The Negro Motorist's Green Book (1937-1964).” National Museum of American History, Smithsonian Institution, 30 July 2015, americanhistory.si.edu/blog/negro-motorists-green-book. Referenced Hyperlink #4:Kahn, Eve M. “The 'Green Book' Legacy, a Beacon for Black Travelers.” The New York Times, The New York Times, 6 Aug. 2015, www.nytimes.com/2015/08/07/arts/design/the-green-book-legacy-a-beacon-for-black-travelers.html. Referenced Hyperlink #5:Giorgis, Hannah. “The Documentary Highlighting the Real 'Green Book'.” The Atlantic, Atlantic Media Company, 25 Feb. 2019, www.theatlantic.com/entertainment/archive/2019/02/real-green-book-preserving-stories-of-jim-crow-era-travel/583294/. Referenced Hyperlink #6:Staples, Brent. “Traveling While Black: The Green Book's Black History.” The New York Times, The New York Times, 25 Jan. 2019, www.nytimes.com/2019/01/25/opinion/green-book-black-travel.html. Referenced Hyperlink #7:Pollak, Michael. “How Official Is Official?” The New York Times, The New York Times, 15 Oct. 2010, www.nytimes.com/2010/10/17/nyregion/17fyi.html. Referenced Hyperlink #8:“New Name: Avenue Becomes a Boulevard.” The New York Times, The New York Times, 22 Oct. 1987, www.nytimes.com/1987/10/22/nyregion/new-name-avenue-becomes-a-boulevard.html. Referenced Hyperlink #9:Norris, Frank. “Racial Dynamism in Los Angeles, 1900–1964.” Southern California Quarterly, vol. 99, no. 3, 2017, pp. 251–289., doi:10.1525/scq.2017.99.3.251. Referenced Hyperlink #10:Shertzer, Allison, et al. Urban Transition Historical GIS Project, 2016, https://s4.ad.brown.edu/Projects/UTP2/ncities.htm. Referenced Hyperlink #11:Mitchell, Bruce. “HOLC ‘Redlining’ Maps: The Persistent Structure Of Segregation And Economic Inequality.” National Community Reinvestment Coalition, 20 Mar. 2018,
In 2020, about 82.66 percent of the total population in the United States lived in cities and urban areas. As the United States was one of the earliest nations to industrialize, it has had a comparatively high rate of urbanization over the past two centuries. The urban population became larger than the rural population during the 1910s, and by the middle of the century it is expected that almost 90 percent of the population will live in an urban setting. Regional development of urbanization in the U.S. The United States began to urbanize on a larger scale in the 1830s, as technological advancements reduced the labor demand in agriculture, and as European migration began to rise. One major difference between early urbanization in the U.S. and other industrializing economies, such as the UK or Germany, was population distribution. Throughout the 1800s, the Northeastern U.S. became the most industrious and urban region of the country, as this was the main point of arrival for migrants. Disparities in industrialization and urbanization was a key contributor to the Union's victory in the Civil War, not only due to population sizes, but also through production capabilities and transport infrastructure. The Northeast's population reached an urban majority in the 1870s, whereas this did not occur in the South until the 1950s. As more people moved westward in the late 1800s, not only did their population growth increase, but the share of the urban population also rose, with an urban majority established in both the West and Midwest regions in the 1910s. The West would eventually become the most urbanized region in the 1960s, and over 90 percent of the West's population is urbanized today. Urbanization today New York City is the most populous city in the United States, with a population of 8.3 million, while California has the largest urban population of any state. California also has the highest urbanization rate, although the District of Columbia is considered 100 percent urban. Only four U.S. states still have a rural majority, these are Maine, Mississippi, Montana, and West Virginia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Wayland town population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Wayland town. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,950 (52.56% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wayland town Population by Age. You can refer the same here
Median Age of the population of New York City in total and by Borough: unadjusted decennial census data from 1950-2000 and projected figures from 2010-2030.
This is a hybrid gridded dataset of demographic data for the world, given as 5-year population bands at a 0.5 degree grid resolution. This dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4) with the ISIMIP Histsoc gridded population data and the United Nations World Population Program (WPP) demographic modelling data. Demographic fractions are given for the time period covered by the UN WPP model (1950-2050) while demographic totals are given for the time period covered by the combination of GPWv4 and Histsoc (1950-2020) Method - demographic fractions Demographic breakdown of country population by grid cell is calculated by combining the GPWv4 demographic data given for 2010 with the yearly country breakdowns from the UN WPP. This combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP. This makes it possible to calculate exposure trends from 1980 to the present day. To combine the UN WPP demographics with the GPWv4 demographics, we calculate for each country the proportional change in fraction of demographic in each age band relative to 2010 as: (\delta_{year,\ country,age}^{\text{wpp}} = f_{year,\ country,age}^{\text{wpp}}/f_{2010,country,age}^{\text{wpp}}) Where: - (\delta_{year,\ country,age}^{\text{wpp}}) is the ratio of change in demographic for a given age and and country from the UN WPP dataset. - (f_{year,\ country,age}^{\text{wpp}}) is the fraction of population in the UN WPP dataset for a given age band, country, and year. - (f_{2010,country,age}^{\text{wpp}}) is the fraction of population in the UN WPP dataset for a given age band, country for the year 2020. The gridded demographic fraction is then calculated relative to the 2010 demographic data given by GPWv4. For each subset of cells corresponding to a given country c, the fraction of population in a given age band is calculated as: (f_{year,c,age}^{\text{gpw}} = \delta_{year,\ country,age}^{\text{wpp}}*f_{2010,c,\text{age}}^{\text{gpw}}) Where: - (f_{year,c,age}^{\text{gpw}}) is the fraction of the population in a given age band for given year, for the grid cell c. - (f_{2010,c,age}^{\text{gpw}}) is the fraction of the population in a given age band for 2010, for the grid cell c. The matching between grid cells and country codes is performed using the GPWv4 gridded country code lookup data and country name lookup table. The final dataset is assembled by combining the cells from all countries into a single gridded time series. This time series covers the whole period from 1950-2050, corresponding to the data available in the UN WPP model. Method - demographic totals Total population data from 1950 to 1999 is drawn from ISIMIP Histsoc, while data from 2000-2020 is drawn from GPWv4. These two gridded time series are simply joined at the cut-over date to give a single dataset covering 1950-2020. The total population per age band per cell is calculated by multiplying the population fractions by the population totals per grid cell. Note that as the total population data only covers until 2020, the time span covered by the demographic population totals data is 1950-2020 (not 1950-2050). Disclaimer This dataset is a hybrid of different datasets with independent methodologies. No guarantees are made about the spatial or temporal consistency across dataset boundaries. The dataset may contain outlier points (e.g single cells with demographic fractions >1). This dataset is produced on a 'best effort' basis and has been found to be broadly consistent with other approaches, but may contain inconsistencies which not been identified. {"references": ["UN. (2019). World Population Prospects 2019: Data Booklet. Retrieved from https://population.un.org/wpp/Publications/Files/WPP2019_DataBooklet.pdf", "NASA SEDAC, & CIESIN. (2016). Gridded Population of the World, Version 4 (GPWv4): Population Count. New York, New York, USA: Columbia University. Retrieved from http://dx.doi.org/10.7927/H4X63JVC", "ISIMIP. (2018). ISIMIP Project Design and Simulation Protocol. Retrieved from https://www.isimip.org/gettingstarted/input-data-bias-correction/details/31/"]}
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Poughkeepsie-Newburgh metro area from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Stewart Manor population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Stewart Manor across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Stewart Manor was 1,925, a 0.36% decrease year-by-year from 2022. Previously, in 2022, Stewart Manor population was 1,932, a decline of 0.92% compared to a population of 1,950 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Stewart Manor increased by 9. In this period, the peak population was 1,974 in the year 2013. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Stewart Manor Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Mamaroneck town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Mamaroneck town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Mamaroneck town was 30,943, a 1.28% decrease year-by-year from 2021. Previously, in 2021, Mamaroneck town population was 31,343, a decline of 0.79% compared to a population of 31,594 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Mamaroneck town increased by 1,950. In this period, the peak population was 31,594 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Mamaroneck town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Ithaca town by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Ithaca town. The dataset can be utilized to understand the population distribution of Ithaca town by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Ithaca town. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Ithaca town.
Key observations
Largest age group (population): Male # 15-19 years (1,950) | Female # 15-19 years (1,957). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ithaca town Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Marilla town. The dataset can be utilized to gain insights into gender-based income distribution within the Marilla town population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Marilla town median household income by race. You can refer the same here
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Unadjusted decennial census data from 1950-2000 and projected figures from 2010-2040: summary table of New York City population numbers and percentage share by Borough, including school-age (5 to 17), 65 and Over, and total population.