11 datasets found
  1. Mexico: population in Yucatán 2008-2022

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Mexico: population in Yucatán 2008-2022 [Dataset]. https://www.statista.com/statistics/1038263/mexico-total-population-yucatan/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Mexico
    Description

    As it harbors some of the most important tourist destinations in the country, the number of people living in Yucatán has been growing throughout the past decade, reaching over 2.37 million inhabitants in 2022.

  2. f

    S23 to S44 Figs best intra-annual generalized depletion models—O....

    • plos.figshare.com
    zip
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alicia Poot-Salazar; Iván Velázquez-Abunader; Otilio Avendaño; Polo Barajas-Girón; Ramon Isaac Rojas-González; Saul Pensamiento-Villarauz; Jesús M. Soto-Vázquez; José F. Chávez-Villegas; Rubén H. Roa-Ureta (2024). S23 to S44 Figs best intra-annual generalized depletion models—O. americanus. [Dataset]. http://doi.org/10.1371/journal.pone.0307836.s002
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Alicia Poot-Salazar; Iván Velázquez-Abunader; Otilio Avendaño; Polo Barajas-Girón; Ramon Isaac Rojas-González; Saul Pensamiento-Villarauz; Jesús M. Soto-Vázquez; José F. Chávez-Villegas; Rubén H. Roa-Ureta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Model fit to data (top panel; dots: data; line: model) and residual diagnostics (three bottom panels; left: residual histogram; centre: residual cloud; right: quantile-quantile plot) for 22 fishing seasons of O. americanus in Yucatan, Mexico. (ZIP)

  3. n

    Data from: Short-distance barriers affect genetic variability of Rhizophora...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Sep 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diana Cisneros-de la Cruz; Jaime Martínez-Castillo; Jorge Herrera-Silveira; Laura Yáñez-Espinosa; Matilde Ortiz-García; Roberth Us-Santamaría; Jose Luis Andrade (2019). Short-distance barriers affect genetic variability of Rhizophora mangle L. in the Yucatan Peninsula [Dataset]. http://doi.org/10.5061/dryad.1578ks0
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 12, 2019
    Dataset provided by
    Centro de Investigación Científica de Yucatán (CICY); Mérida México
    Autonomous University of San Luis Potosí
    Centro de Investigación y Estudios Avanzados (CINVESTAV) Mérida; Mérida Mexico
    Authors
    Diana Cisneros-de la Cruz; Jaime Martínez-Castillo; Jorge Herrera-Silveira; Laura Yáñez-Espinosa; Matilde Ortiz-García; Roberth Us-Santamaría; Jose Luis Andrade
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Yucatán Peninsula, Mexico
    Description

    The environmental variability at local scale results in different physiognomic types of mangrove forest. However, this variability has never been considered in studies of mangrove genetic variability. This study analyzed the genetic and morphological variability and structure of Rhizophora mangle at regional and local scales in the Yucatan Peninsula. Thirteen mangrove populations (eight scrub and five tall), located in seven sites, were sampled, and their morphological variability and relationship with the availability of phosphorus and salinity were analyzed. The diversity and genetic structure were estimated at different hierarchical levels with nine microsatellites, also Bayesian inference and Principal Coordinates Analysis were used. We found a great morphological variability of R. mangle that responded to local environmental variability and not to the precipitation gradient of the peninsula. The genetic diversity found in the peninsula was greater than that reported for other populations in Mexico and was grouped into two regions: the Gulf of Mexico and the Caribbean Sea. At a local scale, tall and scrub mangroves had significant genetic differentiation suggesting that ecological barriers promote genetic differentiation within sites. These results need to be considered in future population genetic studies and for mangrove management and conservation.

  4. Reconstructing the Population Genetic History of the Caribbean

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrés Moreno-Estrada; Simon Gravel; Fouad Zakharia; Jacob L. McCauley; Jake K. Byrnes; Christopher R. Gignoux; Patricia A. Ortiz-Tello; Ricardo J. Martínez; Dale J. Hedges; Richard W. Morris; Celeste Eng; Karla Sandoval; Suehelay Acevedo-Acevedo; Paul J. Norman; Zulay Layrisse; Peter Parham; Juan Carlos Martínez-Cruzado; Esteban González Burchard; Michael L. Cuccaro; Eden R. Martin; Carlos D. Bustamante (2023). Reconstructing the Population Genetic History of the Caribbean [Dataset]. http://doi.org/10.1371/journal.pgen.1003925
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Andrés Moreno-Estrada; Simon Gravel; Fouad Zakharia; Jacob L. McCauley; Jake K. Byrnes; Christopher R. Gignoux; Patricia A. Ortiz-Tello; Ricardo J. Martínez; Dale J. Hedges; Richard W. Morris; Celeste Eng; Karla Sandoval; Suehelay Acevedo-Acevedo; Paul J. Norman; Zulay Layrisse; Peter Parham; Juan Carlos Martínez-Cruzado; Esteban González Burchard; Michael L. Cuccaro; Eden R. Martin; Carlos D. Bustamante
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Caribbean
    Description

    The Caribbean basin is home to some of the most complex interactions in recent history among previously diverged human populations. Here, we investigate the population genetic history of this region by characterizing patterns of genome-wide variation among 330 individuals from three of the Greater Antilles (Cuba, Puerto Rico, Hispaniola), two mainland (Honduras, Colombia), and three Native South American (Yukpa, Bari, and Warao) populations. We combine these data with a unique database of genomic variation in over 3,000 individuals from diverse European, African, and Native American populations. We use local ancestry inference and tract length distributions to test different demographic scenarios for the pre- and post-colonial history of the region. We develop a novel ancestry-specific PCA (ASPCA) method to reconstruct the sub-continental origin of Native American, European, and African haplotypes from admixed genomes. We find that the most likely source of the indigenous ancestry in Caribbean islanders is a Native South American component shared among inland Amazonian tribes, Central America, and the Yucatan peninsula, suggesting extensive gene flow across the Caribbean in pre-Columbian times. We find evidence of two pulses of African migration. The first pulse—which today is reflected by shorter, older ancestry tracts—consists of a genetic component more similar to coastal West African regions involved in early stages of the trans-Atlantic slave trade. The second pulse—reflected by longer, younger tracts—is more similar to present-day West-Central African populations, supporting historical records of later transatlantic deportation. Surprisingly, we also identify a Latino-specific European component that has significantly diverged from its parental Iberian source populations, presumably as a result of small European founder population size. We demonstrate that the ancestral components in admixed genomes can be traced back to distinct sub-continental source populations with far greater resolution than previously thought, even when limited pre-Columbian Caribbean haplotypes have survived.

  5. f

    Parameter estimates, surplus production model.

    • plos.figshare.com
    xls
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alicia Poot-Salazar; Iván Velázquez-Abunader; Otilio Avendaño; Polo Barajas-Girón; Ramon Isaac Rojas-González; Saul Pensamiento-Villarauz; Jesús M. Soto-Vázquez; José F. Chávez-Villegas; Rubén H. Roa-Ureta (2024). Parameter estimates, surplus production model. [Dataset]. http://doi.org/10.1371/journal.pone.0307836.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Alicia Poot-Salazar; Iván Velázquez-Abunader; Otilio Avendaño; Polo Barajas-Girón; Ramon Isaac Rojas-González; Saul Pensamiento-Villarauz; Jesús M. Soto-Vázquez; José F. Chávez-Villegas; Rubén H. Roa-Ureta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Maximum likelihood estimates of directly estimated parameters (K, p, and r) and derived reference points (MSY, BMSY, average total latent productivity (TLP)) of the best Pella-Tomlinson models for each octopus species, O. maya and O. americanus, in the Yucatan Peninsula, Mexico. MLE: maximum likelihood estimate; CV: coefficient of variation; TLP: annually averaged total latent productivity; : annually averaged landings.

  6. f

    Model selection, surplus production model.

    • plos.figshare.com
    xls
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alicia Poot-Salazar; Iván Velázquez-Abunader; Otilio Avendaño; Polo Barajas-Girón; Ramon Isaac Rojas-González; Saul Pensamiento-Villarauz; Jesús M. Soto-Vázquez; José F. Chávez-Villegas; Rubén H. Roa-Ureta (2024). Model selection, surplus production model. [Dataset]. http://doi.org/10.1371/journal.pone.0307836.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Alicia Poot-Salazar; Iván Velázquez-Abunader; Otilio Avendaño; Polo Barajas-Girón; Ramon Isaac Rojas-González; Saul Pensamiento-Villarauz; Jesús M. Soto-Vázquez; José F. Chávez-Villegas; Rubén H. Roa-Ureta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of surplus production model variants fitted to biomass and biomass standard errors predicted by intra-annual generalized depletion models applied to the fisheries for O. maya and O. americanus in the Yucatan Peninsula, Mexico. In both species changes in some parameter values happen from 2010 to 2011. Nº is the number of parameters. Best working model marked in bold.

  7. f

    S1 to S22 Figs best intra-annual generalized models—O. maya.

    • plos.figshare.com
    zip
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alicia Poot-Salazar; Iván Velázquez-Abunader; Otilio Avendaño; Polo Barajas-Girón; Ramon Isaac Rojas-González; Saul Pensamiento-Villarauz; Jesús M. Soto-Vázquez; José F. Chávez-Villegas; Rubén H. Roa-Ureta (2024). S1 to S22 Figs best intra-annual generalized models—O. maya. [Dataset]. http://doi.org/10.1371/journal.pone.0307836.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Alicia Poot-Salazar; Iván Velázquez-Abunader; Otilio Avendaño; Polo Barajas-Girón; Ramon Isaac Rojas-González; Saul Pensamiento-Villarauz; Jesús M. Soto-Vázquez; José F. Chávez-Villegas; Rubén H. Roa-Ureta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Model fit to data (top panel; dots: data; line: model) and residual diagnostics (three bottom panels; left: residual histogram; centre: residual cloud; right: quantile-quantile plot) for 22 fishing seasons of O. maya in Yucatan, Mexico. (ZIP)

  8. f

    Predictor variables used for modeling habitat suitability of jaguars in...

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gerardo Ceballos; Heliot Zarza; José F. González-Maya; J. Antonio de la Torre; Andrés Arias-Alzate; Carlos Alcerreca; Horacio V. Barcenas; Gerardo Carreón-Arroyo; Cuauhtémoc Chávez; Carlos Cruz; Daniela Medellín; Andres García; Marco Antonio-García; Marco A. Lazcano-Barrero; Rodrigo A. Medellín; Oscar Moctezuma-Orozco; Fernando Ruiz; Yamel Rubio; Victor H. Luja; Erik Joaquín Torres-Romero (2023). Predictor variables used for modeling habitat suitability of jaguars in Mexico. [Dataset]. http://doi.org/10.1371/journal.pone.0255555.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Gerardo Ceballos; Heliot Zarza; José F. González-Maya; J. Antonio de la Torre; Andrés Arias-Alzate; Carlos Alcerreca; Horacio V. Barcenas; Gerardo Carreón-Arroyo; Cuauhtémoc Chávez; Carlos Cruz; Daniela Medellín; Andres García; Marco Antonio-García; Marco A. Lazcano-Barrero; Rodrigo A. Medellín; Oscar Moctezuma-Orozco; Fernando Ruiz; Yamel Rubio; Victor H. Luja; Erik Joaquín Torres-Romero
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mexico
    Description

    Predictor variables used for modeling habitat suitability of jaguars in Mexico.

  9. f

    Summary data and statistics for the 2010 and 2018 jaguar censuses in Mexico....

    • figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gerardo Ceballos; Heliot Zarza; José F. González-Maya; J. Antonio de la Torre; Andrés Arias-Alzate; Carlos Alcerreca; Horacio V. Barcenas; Gerardo Carreón-Arroyo; Cuauhtémoc Chávez; Carlos Cruz; Daniela Medellín; Andres García; Marco Antonio-García; Marco A. Lazcano-Barrero; Rodrigo A. Medellín; Oscar Moctezuma-Orozco; Fernando Ruiz; Yamel Rubio; Victor H. Luja; Erik Joaquín Torres-Romero (2023). Summary data and statistics for the 2010 and 2018 jaguar censuses in Mexico. [Dataset]. http://doi.org/10.1371/journal.pone.0255555.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Gerardo Ceballos; Heliot Zarza; José F. González-Maya; J. Antonio de la Torre; Andrés Arias-Alzate; Carlos Alcerreca; Horacio V. Barcenas; Gerardo Carreón-Arroyo; Cuauhtémoc Chávez; Carlos Cruz; Daniela Medellín; Andres García; Marco Antonio-García; Marco A. Lazcano-Barrero; Rodrigo A. Medellín; Oscar Moctezuma-Orozco; Fernando Ruiz; Yamel Rubio; Victor H. Luja; Erik Joaquín Torres-Romero
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Mexico
    Description

    Summary data and statistics for the 2010 and 2018 jaguar censuses in Mexico.

  10. Ancestral Components of Admixed Genomes in a Mexican Cohort

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas A. Johnson; Marc A. Coram; Mark D. Shriver; Isabelle Romieu; Gregory S. Barsh; Stephanie J. London; Hua Tang (2023). Ancestral Components of Admixed Genomes in a Mexican Cohort [Dataset]. http://doi.org/10.1371/journal.pgen.1002410
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Nicholas A. Johnson; Marc A. Coram; Mark D. Shriver; Isabelle Romieu; Gregory S. Barsh; Stephanie J. London; Hua Tang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For most of the world, human genome structure at a population level is shaped by interplay between ancient geographic isolation and more recent demographic shifts, factors that are captured by the concepts of biogeographic ancestry and admixture, respectively. The ancestry of non-admixed individuals can often be traced to a specific population in a precise region, but current approaches for studying admixed individuals generally yield coarse information in which genome ancestry proportions are identified according to continent of origin. Here we introduce a new analytic strategy for this problem that allows fine-grained characterization of admixed individuals with respect to both geographic and genomic coordinates. Ancestry segments from different continents, identified with a probabilistic model, are used to construct and study “virtual genomes” of admixed individuals. We apply this approach to a cohort of 492 parent–offspring trios from Mexico City. The relative contributions from the three continental-level ancestral populations—Africa, Europe, and America—vary substantially between individuals, and the distribution of haplotype block length suggests an admixing time of 10–15 generations. The European and Indigenous American virtual genomes of each Mexican individual can be traced to precise regions within each continent, and they reveal a gradient of Amerindian ancestry between indigenous people of southwestern Mexico and Mayans of the Yucatan Peninsula. This contrasts sharply with the African roots of African Americans, which have been characterized by a uniform mixing of multiple West African populations. We also use the virtual European and Indigenous American genomes to search for the signatures of selection in the ancestral populations, and we identify previously known targets of selection in other populations, as well as new candidate loci. The ability to infer precise ancestral components of admixed genomes will facilitate studies of disease-related phenotypes and will allow new insight into the adaptive and demographic history of indigenous people.

  11. f

    Genetic diversity parameters determined with GENALEX, POPGENE, and HICKORY...

    • plos.figshare.com
    xls
    Updated Jun 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salima Machkour-M’Rabet; Waldemar Santamaría-Rivero; Alexander Dzib-Chay; Leopoldo Torres Cristiani; Barbara MacKinnon-Haskins (2023). Genetic diversity parameters determined with GENALEX, POPGENE, and HICKORY v1.1 (full model) software for three populations of Setophaga petechia complex from Quintana Roo, Mexico. [Dataset]. http://doi.org/10.1371/journal.pone.0287425.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 22, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Salima Machkour-M’Rabet; Waldemar Santamaría-Rivero; Alexander Dzib-Chay; Leopoldo Torres Cristiani; Barbara MacKinnon-Haskins
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Quintana Roo, Mexico
    Description

    Genetic diversity parameters determined with GENALEX, POPGENE, and HICKORY v1.1 (full model) software for three populations of Setophaga petechia complex from Quintana Roo, Mexico.

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Mexico: population in Yucatán 2008-2022 [Dataset]. https://www.statista.com/statistics/1038263/mexico-total-population-yucatan/
Organization logo

Mexico: population in Yucatán 2008-2022

Explore at:
Dataset updated
Jul 5, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Mexico
Description

As it harbors some of the most important tourist destinations in the country, the number of people living in Yucatán has been growing throughout the past decade, reaching over 2.37 million inhabitants in 2022.

Search
Clear search
Close search
Google apps
Main menu