This graph shows the population density in the federal state of Tennessee from 1960 to 2017. In 2017, the population density of Tennessee stood at ***** residents per square mile of land area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tunisia TN: Population Density: People per Square Km data was reported at 74.228 Person/sq km in 2017. This records an increase from the previous number of 73.399 Person/sq km for 2016. Tunisia TN: Population Density: People per Square Km data is updated yearly, averaging 51.821 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 74.228 Person/sq km in 2017 and a record low of 27.265 Person/sq km in 1961. Tunisia TN: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Tunisia – Table TN.World Bank.WDI: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Coweeta (CWT) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.
description: This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.; abstract: This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tunisia TN: Population Density: Inhabitants per sq km data was reported at 78.010 Person in 2022. This records an increase from the previous number of 77.550 Person for 2021. Tunisia TN: Population Density: Inhabitants per sq km data is updated yearly, averaging 66.600 Person from Dec 1990 (Median) to 2022, with 33 observations. The data reached an all-time high of 78.010 Person in 2022 and a record low of 53.580 Person in 1990. Tunisia TN: Population Density: Inhabitants per sq km data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Tunisia – Table TN.OECD.GGI: Social: Demography: Non OECD Member: Annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Household data are collected as of March.
As stated in the Census's "Source and Accuracy of Estimates for Income, Poverty, and Health Insurance Coverage in the United States: 2011" (http://www.census.gov/hhes/www/p60_243sa.pdf):
Estimation of Median Incomes. The Census Bureau has changed the methodology for computing median income over time. The Census Bureau has computed medians using either Pareto interpolation or linear interpolation. Currently, we are using linear interpolation to estimate all medians. Pareto interpolation assumes a decreasing density of population within an income interval, whereas linear interpolation assumes a constant density of population within an income interval. The Census Bureau calculated estimates of median income and associated standard errors for 1979 through 1987 using Pareto interpolation if the estimate was larger than $20,000 for people or $40,000 for families and households. This is because the width of the income interval containing the estimate is greater than $2,500.
We calculated estimates of median income and associated standard errors for 1976, 1977, and 1978 using Pareto interpolation if the estimate was larger than $12,000 for people or $18,000 for families and households. This is because the width of the income interval containing the estimate is greater than $1,000. All other estimates of median income and associated standard errors for 1976 through 2011 (2012 ASEC) and almost all of the estimates of median income and associated standard errors for 1975 and earlier were calculated using linear interpolation.
Thus, use caution when comparing median incomes above $12,000 for people or $18,000 for families and households for different years. Median incomes below those levels are more comparable from year to year since they have always been calculated using linear interpolation. For an indication of the comparability of medians calculated using Pareto interpolation with medians calculated using linear interpolation, see Series P-60, Number 114, Money Income in 1976 of Families and Persons in the United States (www2.census.gov/prod2/popscan/p60-114.pdf).
Out of all 50 states, New York had the highest per-capita real gross domestic product (GDP) in 2024, at 92,341 U.S. dollars, followed closely by Massachusetts. Mississippi had the lowest per-capita real GDP, at 41,603 U.S. dollars. While not a state, the District of Columbia had a per capita GDP of more than 210,780 U.S. dollars. What is real GDP? A country’s real GDP is a measure that shows the value of the goods and services produced by an economy and is adjusted for inflation. The real GDP of a country helps economists to see the health of a country’s economy and its standard of living. Downturns in GDP growth can indicate financial difficulties, such as the financial crisis of 2008 and 2009, when the U.S. GDP decreased by 2.5 percent. The COVID-19 pandemic had a significant impact on U.S. GDP, shrinking the economy 2.8 percent. The U.S. economy rebounded in 2021, however, growing by nearly six percent. Why real GDP per capita matters Real GDP per capita takes the GDP of a country, state, or metropolitan area and divides it by the number of people in that area. Some argue that per-capita GDP is more important than the GDP of a country, as it is a good indicator of whether or not the country’s population is getting wealthier, thus increasing the standard of living in that area. The best measure of standard of living when comparing across countries is thought to be GDP per capita at purchasing power parity (PPP) which uses the prices of specific goods to compare the absolute purchasing power of a countries currency.
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Coweeta (CWT) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.
This statistics shows the leading metropolitan areas with the highest percentage of Black population in the United States in 2023. Among the 81 largest metropolitan areas, Memphis, Tennessee was ranked first with ** percent of residents reporting as Black or African-Americans in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total number of ¼ m2 quadrats excavated and raw number of individuals encountered in quadrats were used to estimate mean densities (mussels/m2) and 95% confidence limits (CL) for Epioblasma brevidens and E. capsaeformis by census year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
TN:人口密度:每平方公里人口在12-01-2017达74.228Person/sq km,相较于12-01-2016的73.399Person/sq km有所增长。TN:人口密度:每平方公里人口数据按年更新,12-01-1961至12-01-2017期间平均值为51.821Person/sq km,共57份观测结果。该数据的历史最高值出现于12-01-2017,达74.228Person/sq km,而历史最低值则出现于12-01-1961,为27.265Person/sq km。CEIC提供的TN:人口密度:每平方公里人口数据处于定期更新的状态,数据来源于World Bank,数据归类于全球数据库的突尼斯 – 表 TN.世行.WDI:人口和城市化进程统计。
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Walker Branch Watershed (WBW) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Coweeta (CWT) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.
In 2022, the New Orleans-Metairie, LA metro area recorded the highest homicide rate of U.S. cities with a population over 250,000, at **** homicides per 100,000 residents, followed by the Memphis, TN-MS-AR metro area. However, homicide data was not recorded in all U.S. metro areas, meaning that there may be some cities with a higher homicide rate. St. Louis St. Louis, which had a murder and nonnegligent manslaughter rate of **** in 2022, is the second-largest city by population in Missouri. It is home to many famous treasures, such as the St. Louis Cardinals baseball team, Washington University in St. Louis, the Saint Louis Zoo, and the renowned Gateway Arch. It is also home to many corporations, such as Monsanto, Arch Coal, and Emerson Electric. The economy of St. Louis is centered around business and healthcare, and boasts ten Fortune 500 companies. Crime in St. Louis Despite all of this, St. Louis suffers from high levels of crime and violence. As of 2023, it was listed as the seventh most dangerous city in the world as a result of their extremely high murder rate. Not only does St. Louis have one of the highest homicide rates in the United States, it also reports one of the highest numbers of violent crimes. Despite high crime levels, the GDP of the St. Louis metropolitan area has been increasing since 2001.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rapid urbanization has caused widespread environmental pollution in Africa, restricting sustainable development programs. Today, non-point source pollution has become a major threat to many African cities. In this study, we have classified urban land use followed by the identification of urban functional areas based on multi-source data. We have then evaluated non-point source pollution based on nitrogen and phosphorus loads at a spatial scale in Mwanza city (Tanzania). We have estimated the spatial distribution of total nitrogen (TN) and total phosphorus (TP) loads at a scale of 1 square kilometer grid. The results show that ① the built-up area of the city was identified as 28.9 km2, accounting for 6.8% of the total area of the city. The area of informal settlements was 56.9 km2, accounting for 13.4% of the total area of the city. About 90.38% of 2.41×105 kg of the total TN load and 87.23% of 4.00×104 kg of the total TP load in the city were derived from the informal settlements alone in 2020. ② The average load intensities of TN and TP in Mwanza city were 6.90 kg·hm-2·yr-1 and 1.14 kg·hm-2·yr-1, respectively. The average TN and TP intensities in Mwanza city were slightly higher than the average TN and TP load intensities in the Lake Victoria basin. However, given the high population density of the Mwanza city area, the average TN and TP intensities were found to be consistent. ③ The TN and TP pollution loads were relatively concentrated in the inner urban area, including the lower reaches of the Mirongo River basin, the eastern side of the Nyamagana Peninsula, and the lakeside area extending north and south from the peninsula, and gradually decreased toward the city’s outskirts. We propose that the identified riparian areas in our study should be prioritized as potentially key construction zones for pollution treatment plant facilities and urban renewal pilot programs for restraining the widespread informal settlements. This study contributes to the development of an innovative urban non-point source pollution control measure, which may be applicable to low-income countries in Africa and elsewhere.
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Coweeta (CWT) contains percent urban population measurements in percent units and were aggregated to a yearly timescale.
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Coweeta (CWT) contains percent urban population measurements in percent units and were aggregated to a yearly timescale.
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Coweeta (CWT) contains percent urban population measurements in percent units and were aggregated to a yearly timescale.
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Coweeta (CWT) contains percent urban population measurements in percent units and were aggregated to a yearly timescale.
The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Coweeta (CWT) contains percent urban population measurements in percent units and were aggregated to a yearly timescale.
This graph shows the population density in the federal state of Tennessee from 1960 to 2017. In 2017, the population density of Tennessee stood at ***** residents per square mile of land area.