46 datasets found
  1. Distribution of projected population growth India 2011-2036 by state

    • statista.com
    Updated Jul 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Distribution of projected population growth India 2011-2036 by state [Dataset]. https://www.statista.com/statistics/1155340/india-distribution-of-projected-population-growth-by-state/
    Explore at:
    Dataset updated
    Jul 10, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The share of projected population increase in Uttar Pradesh, India from 2011 until 2036 is expected to grow by nearly 20 percent. By contrast, the estimated population increase in Uttarakhand is expected to be less than one percent during the same time period.

    Why project population?
    Population projections for a country are becoming increasingly important now than ever before. They are used primarily by government policy makers and planners to better understand and gauge future demand for basic services that predominantly include water, food and energy. In addition, they also support in indicating major movements that may affect economic development and in turn, employment and labour productivity. Consequently, this leads to amending policies in order to better adapt to the needs of society and to various circumstances.

    Demographic projections and health interventions Demographic figures serve the foremost purpose of improving health and health related services among the population. Some of the government interventions include antenatal and neonatal care with the aim of reducing maternal and neonatal mortality and morbidity rates. In addition, it also focuses on improving immunization coverage across the country. Further, demographic estimates help in better preempting the needs of growing populations, such as the geriatric population within a country.

  2. Population growth in India 2023

    • statista.com
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population growth in India 2023 [Dataset]. https://www.statista.com/statistics/271308/population-growth-in-india/
    Explore at:
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    The annual population growth in India increased by 0.1 percentage points (+12.66 percent) in 2023. This was the first time during the observed period that the population growth has increased in India. Population growth refers to the annual change in population, and is based on the balance between birth and death rates, as well as migration.Find more key insights for the annual population growth in countries like Nepal and Sri Lanka.

  3. k

    Development Indicators

    • datasource.kapsarc.org
    Updated Apr 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Development Indicators [Dataset]. https://datasource.kapsarc.org/explore/dataset/saudi-arabia-world-development-indicators-1960-2014/
    Explore at:
    Dataset updated
    Apr 26, 2025
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Explore the Saudi Arabia World Development Indicators dataset , including key indicators such as Access to clean fuels, Adjusted net enrollment rate, CO2 emissions, and more. Find valuable insights and trends for Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, and India.

    Indicator, Access to clean fuels and technologies for cooking, rural (% of rural population), Access to electricity (% of population), Adjusted net enrollment rate, primary, female (% of primary school age children), Adjusted net national income (annual % growth), Adjusted savings: education expenditure (% of GNI), Adjusted savings: mineral depletion (current US$), Adjusted savings: natural resources depletion (% of GNI), Adjusted savings: net national savings (current US$), Adolescents out of school (% of lower secondary school age), Adolescents out of school, female (% of female lower secondary school age), Age dependency ratio (% of working-age population), Agricultural methane emissions (% of total), Agriculture, forestry, and fishing, value added (current US$), Agriculture, forestry, and fishing, value added per worker (constant 2015 US$), Alternative and nuclear energy (% of total energy use), Annualized average growth rate in per capita real survey mean consumption or income, total population (%), Arms exports (SIPRI trend indicator values), Arms imports (SIPRI trend indicator values), Average working hours of children, working only, ages 7-14 (hours per week), Average working hours of children, working only, male, ages 7-14 (hours per week), Cause of death, by injury (% of total), Cereal yield (kg per hectare), Changes in inventories (current US$), Chemicals (% of value added in manufacturing), Child employment in agriculture (% of economically active children ages 7-14), Child employment in manufacturing, female (% of female economically active children ages 7-14), Child employment in manufacturing, male (% of male economically active children ages 7-14), Child employment in services (% of economically active children ages 7-14), Child employment in services, female (% of female economically active children ages 7-14), Children (ages 0-14) newly infected with HIV, Children in employment, study and work (% of children in employment, ages 7-14), Children in employment, unpaid family workers (% of children in employment, ages 7-14), Children in employment, wage workers (% of children in employment, ages 7-14), Children out of school, primary, Children out of school, primary, male, Claims on other sectors of the domestic economy (annual growth as % of broad money), CO2 emissions (kg per 2015 US$ of GDP), CO2 emissions (kt), CO2 emissions from other sectors, excluding residential buildings and commercial and public services (% of total fuel combustion), CO2 emissions from transport (% of total fuel combustion), Communications, computer, etc. (% of service exports, BoP), Condom use, population ages 15-24, female (% of females ages 15-24), Container port traffic (TEU: 20 foot equivalent units), Contraceptive prevalence, any method (% of married women ages 15-49), Control of Corruption: Estimate, Control of Corruption: Percentile Rank, Upper Bound of 90% Confidence Interval, Control of Corruption: Standard Error, Coverage of social insurance programs in 4th quintile (% of population), CPIA building human resources rating (1=low to 6=high), CPIA debt policy rating (1=low to 6=high), CPIA policies for social inclusion/equity cluster average (1=low to 6=high), CPIA public sector management and institutions cluster average (1=low to 6=high), CPIA quality of budgetary and financial management rating (1=low to 6=high), CPIA transparency, accountability, and corruption in the public sector rating (1=low to 6=high), Current education expenditure, secondary (% of total expenditure in secondary public institutions), DEC alternative conversion factor (LCU per US$), Deposit interest rate (%), Depth of credit information index (0=low to 8=high), Diarrhea treatment (% of children under 5 who received ORS packet), Discrepancy in expenditure estimate of GDP (current LCU), Domestic private health expenditure per capita, PPP (current international $), Droughts, floods, extreme temperatures (% of population, average 1990-2009), Educational attainment, at least Bachelor's or equivalent, population 25+, female (%) (cumulative), Educational attainment, at least Bachelor's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least completed lower secondary, population 25+, female (%) (cumulative), Educational attainment, at least completed primary, population 25+ years, total (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, male (%) (cumulative), Educational attainment, at least Master's or equivalent, population 25+, total (%) (cumulative), Electricity production from coal sources (% of total), Electricity production from nuclear sources (% of total), Employers, total (% of total employment) (modeled ILO estimate), Employment in industry (% of total employment) (modeled ILO estimate), Employment in services, female (% of female employment) (modeled ILO estimate), Employment to population ratio, 15+, male (%) (modeled ILO estimate), Employment to population ratio, ages 15-24, total (%) (national estimate), Energy use (kg of oil equivalent per capita), Export unit value index (2015 = 100), Exports of goods and services (% of GDP), Exports of goods, services and primary income (BoP, current US$), External debt stocks (% of GNI), External health expenditure (% of current health expenditure), Female primary school age children out-of-school (%), Female share of employment in senior and middle management (%), Final consumption expenditure (constant 2015 US$), Firms expected to give gifts in meetings with tax officials (% of firms), Firms experiencing losses due to theft and vandalism (% of firms), Firms formally registered when operations started (% of firms), Fixed broadband subscriptions, Fixed telephone subscriptions (per 100 people), Foreign direct investment, net outflows (% of GDP), Forest area (% of land area), Forest area (sq. km), Forest rents (% of GDP), GDP growth (annual %), GDP per capita (constant LCU), GDP per unit of energy use (PPP $ per kg of oil equivalent), GDP, PPP (constant 2017 international $), General government final consumption expenditure (current LCU), GHG net emissions/removals by LUCF (Mt of CO2 equivalent), GNI growth (annual %), GNI per capita (constant LCU), GNI, PPP (current international $), Goods and services expense (current LCU), Government Effectiveness: Percentile Rank, Government Effectiveness: Percentile Rank, Lower Bound of 90% Confidence Interval, Government Effectiveness: Standard Error, Gross capital formation (annual % growth), Gross capital formation (constant 2015 US$), Gross capital formation (current LCU), Gross fixed capital formation, private sector (% of GDP), Gross intake ratio in first grade of primary education, male (% of relevant age group), Gross intake ratio in first grade of primary education, total (% of relevant age group), Gross national expenditure (current LCU), Gross national expenditure (current US$), Households and NPISHs Final consumption expenditure (constant LCU), Households and NPISHs Final consumption expenditure (current US$), Households and NPISHs Final consumption expenditure, PPP (constant 2017 international $), Households and NPISHs final consumption expenditure: linked series (current LCU), Human capital index (HCI) (scale 0-1), Human capital index (HCI), male (scale 0-1), Immunization, DPT (% of children ages 12-23 months), Import value index (2015 = 100), Imports of goods and services (% of GDP), Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24), Incidence of HIV, all (per 1,000 uninfected population), Income share held by highest 20%, Income share held by lowest 20%, Income share held by third 20%, Individuals using the Internet (% of population), Industry (including construction), value added (constant LCU), Informal payments to public officials (% of firms), Intentional homicides, male (per 100,000 male), Interest payments (% of expense), Interest rate spread (lending rate minus deposit rate, %), Internally displaced persons, new displacement associated with conflict and violence (number of cases), International tourism, expenditures for passenger transport items (current US$), International tourism, expenditures for travel items (current US$), Investment in energy with private participation (current US$), Labor force participation rate for ages 15-24, female (%) (modeled ILO estimate), Development

    Saudi Arabia, Bahrain, Kuwait, Oman, Qatar, China, India Follow data.kapsarc.org for timely data to advance energy economics research..

  4. World Health Survey 2003 - India

    • dev.ihsn.org
    • catalog.ihsn.org
    • +3more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2019). World Health Survey 2003 - India [Dataset]. https://dev.ihsn.org/nada/catalog/study/IND_2003_WHS_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    India
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  5. COVID-19-Related Shocks in Rural India 2020, Rounds 1-3 - India

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 22, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2021). COVID-19-Related Shocks in Rural India 2020, Rounds 1-3 - India [Dataset]. https://catalog.ihsn.org/catalog/9553
    Explore at:
    Dataset updated
    Mar 22, 2021
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2020
    Area covered
    India
    Description

    Abstract

    An effective policy response to the economic impacts of the COVID-19 pandemic requires an enormous range of data to inform the design and response of programs. Public health measures require data on the spread of the disease, beliefs in the population, and capacity of the health system. Relief efforts depend on an understanding of hardships being faced by various segments of the population. Food policy requires measurement of agricultural production and hunger. In such a rapidly evolving pandemic, these data must be collected at a high frequency. Given the unexpected nature of the shock and urgency with which a response was required, Indian policymakers needed to formulate policies affecting India’s 1.4 billion people, without the detailed evidence required to construct effective programs. To help overcome this evidence gap, the World Bank, IDinsight, and the Development Data Lab sought to produce rigorous and responsive data for policymakers across six states in India: Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh.

    Geographic coverage

    Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, and Uttar Pradesh

    Analysis unit

    Household

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    This dataset includes observations covering six states (Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, Uttar Pradesh) and three survey rounds. The survey did not have a single, unified frame from which to sample phone numbers. The final sample was assembled from several different sample frames, and the choice of frame sample frames varied across states and survey rounds.

    These frames comprise four prior IDinsight projects and from an impact evaluation of the National Rural Livelihoods project conducted by the Ministry of Rural Development. Each of these surveys sought to represent distinct populations, and employed idiosyncratic sample designs and weighting schemes.

    A detailed note covering key features of each sample frame is available for download.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The survey questionnaires covered the following subjects:

    1. Agriculture: COVID-19-related changes in price realisation, acreage decisions, input expenditure, access to credit, access to fertilisers, etc.

    2. Income and consumption: Changes in wage rates, employment duration, consumption expenditure, prices of essential commodities, status of food security etc.

    3. Migration: Rates of in-migration, migrant income and employment status, return migration plans etc.

    4. Access to relief: Access to in-kind, cash and workfare relief, quantities of relief received, and constraints on the access to relief.

    5. Health: Access to health facilities and rates of foregone healthcare, knowledge of COVID-19 related symptoms and protective behaviours.

    While a number of indicators were consistent across all three rounds, questions were added and removed as and when necessary to account for seasonal changes (i.e: in the agricultural cycle).

    Response rate

    Round 1: ~55% Round 2: ~46% Round 3: ~55%

  6. f

    COVID-19 Related Shocks Survey (CRSS) in Rural India 2020 - India

    • microdata.fao.org
    Updated Nov 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank (2022). COVID-19 Related Shocks Survey (CRSS) in Rural India 2020 - India [Dataset]. https://microdata.fao.org/index.php/catalog/1768
    Explore at:
    Dataset updated
    Nov 8, 2022
    Dataset authored and provided by
    The World Bank
    Time period covered
    2020
    Area covered
    India
    Description

    Abstract

    An effective policy response to the economic impacts of the COVID-19 pandemic requires an enormous range of data to inform the design and response of programs. Public health measures require data on the spread of the disease, beliefs in the population, and capacity of the health system. Relief efforts depend on an understanding of hardships being faced by various segments of the population. Food policy requires measurement of agricultural production and hunger. In such a rapidly evolving pandemic, these data must be collected at a high frequency. Given the unexpected nature of the shock and urgency with which a response was required, Indian policymakers needed to formulate policies affecting India's 1.4 billion people, without the detailed evidence required to construct effective programs. To help overcome this evidence gap, researchers from the World Bank, in collaboration with IDinsight, the Development Data Lab, and John Hopkins University sought to produce rigorous and responsive data for policymakers across six states in India: Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh.

    Geographic coverage

    Regional coverage

    Analysis unit

    Households

    Universe

    Households located in Jharkhand, Rajasthan, Uttar Pradesh, Andhra Pradesh, Bihar, and Madhya Pradesh

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    This dataset includes observations covering six states (Andhra Pradesh, Bihar, Jharkhand, Madhya Pradesh, Rajasthan, Uttar Pradesh) and three survey rounds. The survey did not have a single, unified frame from which to sample phone numbers. The final sample was assembled from several different sample frames, and the choice of frame sample frames varied across states and survey rounds.

    These frames comprise four prior IDinsight projects and from an impact evaluation of the National Rural Livelihoods project conducted by the Ministry of Rural Development. Each of these surveys sought to represent distinct populations, and employed idiosyncratic sample designs and weighting schemes.

    A detailed note covering key features of each sample frame is available for download.

    Sampling deviation

    Details will be made available after all rounds of data collection and analysis is complete.

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The survey questionnaires covered the following subjects:

    1. Agriculture: COVID-19-related changes in price realisation, acreage decisions, input expenditure, access to credit, access to fertilisers, etc.

    2. Income and consumption: Changes in wage rates, employment duration, consumption expenditure, prices of essential commodities, status of food security etc.

    3. Migration: Rates of in-migration, migrant income and employment status, return migration plans etc.

    4. Access to relief: Access to in-kind, cash and workfare relief, quantities of relief received, and constraints on the access to relief.

    5. Health: Access to health facilities and rates of foregone healthcare, knowledge of COVID-19 related symptoms and protective behaviours.

    While a number of indicators were consistent across all three rounds, questions were added and removed as and when necessary to account for seasonal changes (i.e: in the agricultural cycle).

    Cleaning operations

    The India COVID-19 surveys were conducted using Computer Assisted Telephone Interview (CATI) techniques. The household questionnaire was implemented using the CATI software, SurveyCTO. The software was deployed through surveyors’ smartphones, who called respondents via mobile, and recorded their responses over the phone. If unreached, surveyors would attempt to call back respondents up to 7 times, often seeking explicit appointments for suitable times to avoid non-responses.

    Validation and consistency checks were incorporated into the SurveyCTO software to avoid human error. Extreme values and outliers were scrutinised through a real time dashboard set up by IDinsight. Surveys were also audio audited by monitors to check for consistency and accuracy of question phrasing and answer recording. Finally, supervisors also randomly back-checked a subset of interviews to further ensure data accuracy.

    IDinsight cleaned and labelled the data for further processing and analysis. The Development Data Lab examined the data for discrepancies and errors and merged the dataset with their proprietary spatial data.

    All personally identifiable information has been removed from the datasets.

    Response rate

    Round 1: ~55% Round 2: ~46% Round 3: ~55%

  7. World Population Data

    • kaggle.com
    Updated Jan 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sazidul Islam (2024). World Population Data [Dataset]. https://www.kaggle.com/datasets/sazidthe1/world-population-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 1, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sazidul Islam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Context

    The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.

    The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.

    Content

    This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.

    Dataset

    Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.

    This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.

    Structure

    This dataset (world_population_data.csv) covering from 1970 up to 2023 includes the following columns:

    Column NameDescription
    RankRank by Population
    CCA33 Digit Country/Territories Code
    CountryName of the Country
    ContinentName of the Continent
    2023 PopulationPopulation of the Country in the year 2023
    2022 PopulationPopulation of the Country in the year 2022
    2020 PopulationPopulation of the Country in the year 2020
    2015 PopulationPopulation of the Country in the year 2015
    2010 PopulationPopulation of the Country in the year 2010
    2000 PopulationPopulation of the Country in the year 2000
    1990 PopulationPopulation of the Country in the year 1990
    1980 PopulationPopulation of the Country in the year 1980
    1970 PopulationPopulation of the Country in the year 1970
    Area (km²)Area size of the Country/Territories in square kilometer
    Density (km²)Population Density per square kilometer
    Growth RatePopulation Growth Rate by Country
    World Population PercentageThe population percentage by each Country

    Acknowledgment

    The primary dataset was retrieved from the World Population Review. I sincerely thank the team for providing the core data used in this dataset.

    © Image credit: Freepik

  8. f

    Data_Sheet_1_Attitudes towards urban stray cats and managing their...

    • frontiersin.figshare.com
    pdf
    Updated Oct 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anamika Changrani-Rastogi; Nishakar Thakur (2023). Data_Sheet_1_Attitudes towards urban stray cats and managing their population in India: a pilot study.pdf [Dataset]. http://doi.org/10.3389/fvets.2023.1274243.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Oct 27, 2023
    Dataset provided by
    Frontiers
    Authors
    Anamika Changrani-Rastogi; Nishakar Thakur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life in contemporary cities is often dangerous for stray cats, with strikingly low survival rates. In several countries, trap-neuter-return (TNR) programs have been employed to control urban stray cat populations. Management of stray cats in urban environments is not just about applying scientific solutions, but also identifying approaches that align with local cultural and ethical values. India has an estimated 9.1 million stray cats. TNR presents as a potential method for stray cat management in India, while also improving their welfare. Yet, to date, there has been no academic exploration on Indian residents’ attitudes towards stray cats. We conducted a survey in 13 cities in India reaching 763 residents, examining interactions with stray cats, negative and positive attitudes towards them, attitudes towards managing their population, and awareness of TNR. Results show a high rate of stray cat sightings and interactions. While most respondents believed that stray cats had a right to welfare, the majority held negative attitudes towards and had negative interactions with them. There was widespread lack of awareness about TNR, but, when described, there was a high degree of support. Gathering insights into opinions about stray cats, and the sociodemographic factors that impact these opinions, is an important first step to developing policies and initiatives to manage stray cat populations.

  9. f

    Data from: Forensic evaluation of mitochondrial DNA heteroplasmy in Gujarat...

    • tandf.figshare.com
    xlsx
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammed H. M. Alqaisi; Molina Madhulika Ekka; Bhargav C. Patel (2023). Forensic evaluation of mitochondrial DNA heteroplasmy in Gujarat population, India [Dataset]. http://doi.org/10.6084/m9.figshare.21583303.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Mohammed H. M. Alqaisi; Molina Madhulika Ekka; Bhargav C. Patel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India, Gujarat
    Description

    Owing to its high copy number and its small size, mtDNA analysis is the most reliable choice when biological materials from crime scenes are degraded or have mixed STR profiles. To examine the occurrence of heteroplasmy along with its frequency and pattern in both HV1 and HV2 regions of the mtDNA among unrelated individuals from India. Mitochondrial DNA control region [hypervariable region one (HV1) and hypervariable region two (HV2)] were analysed in blood and buccal tissues of 104 unrelated individuals from the Indian state of Gujarat. A high frequency of point heteroplasmy (PH) and length heteroplasmy (LH) was revealed. PH was detected in 7.69% of the population, with a higher frequency observed in blood than in buccal samples. However, there were no statistically significant differences in PH between the two tissues (Chi-square = 0.552, p ≥ 0.05). A total of six PH positions were detected: three at HV1, and another three at HV2. The studied population showed 46.15% LH in the HV1 and HV2 regions of both tissues. The LH positions observed in the Gujarat population were the same as those previously reported at HV1 np16184–16193 and HV2 np303–315. Our findings suggest that differences in the pattern of heteroplasmy found in different tissues can complicate the forensic analysis, on the other hand, the probability of a match between the questioned and reference samples increases when the heteroplasmy is identical in both tissues. Variability of PH among persons and even within tissues recommends analysing multiple tissue samples before drawing a conclusion in forensic mtDNA analyses.

  10. Total population of China 1980-2030

    • ai-chatbox.pro
    • statista.com
    Updated Jun 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Total population of China 1980-2030 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstudy%2F13107%2Faging-population-in-china-statista-dossier%2F%23XgboDwS6a1rKoGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Jun 2, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    China
    Description

    According to latest figures, the Chinese population decreased by 1.39 million to around 1.408 billion people in 2024. After decades of rapid growth, China arrived at the turning point of its demographic development in 2022, which was earlier than expected. The annual population decrease is estimated to remain at moderate levels until around 2030 but to accelerate thereafter. Population development in China China had for a long time been the country with the largest population worldwide, but according to UN estimates, it has been overtaken by India in 2023. As the population in India is still growing, the country is very likely to remain being home of the largest population on earth in the near future. Due to several mechanisms put into place by the Chinese government as well as changing circumstances in the working and social environment of the Chinese people, population growth has subsided over the past decades, displaying an annual population growth rate of -0.1 percent in 2024. Nevertheless, compared to the world population in total, China held a share of about 17 percent of the overall global population in 2024. China's aging population In terms of demographic developments, the birth control efforts of the Chinese government had considerable effects on the demographic pyramid in China. Upon closer examination of the age distribution, a clear trend of an aging population becomes visible. In order to curb the negative effects of an aging population, the Chinese government abolished the one-child policy in 2015, which had been in effect since 1979, and introduced a three-child policy in May 2021. However, many Chinese parents nowadays are reluctant to have a second or third child, as is the case in most of the developed countries in the world. The number of births in China varied in the years following the abolishment of the one-child policy, but did not increase considerably. Among the reasons most prominent for parents not having more children are the rising living costs and costs for child care, growing work pressure, a growing trend towards self-realization and individualism, and changing social behaviors.

  11. i

    National Family Health Survey 1998-1999 - India

    • catalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    International Institute for Population Sciences (IIPS) (2019). National Family Health Survey 1998-1999 - India [Dataset]. https://catalog.ihsn.org/catalog/2548
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    International Institute for Population Sciences (IIPS)
    Time period covered
    1998 - 1999
    Area covered
    India
    Description

    Abstract

    The second National Family Health Survey (NFHS-2), conducted in 1998-99, provides information on fertility, mortality, family planning, and important aspects of nutrition, health, and health care. The International Institute for Population Sciences (IIPS) coordinated the survey, which collected information from a nationally representative sample of more than 90,000 ever-married women age 15-49. The NFHS-2 sample covers 99 percent of India's population living in all 26 states. This report is based on the survey data for 25 of the 26 states, however, since data collection in Tripura was delayed due to local problems in the state.

    IIPS also coordinated the first National Family Health Survey (NFHS-1) in 1992-93. Most of the types of information collected in NFHS-2 were also collected in the earlier survey, making it possible to identify trends over the intervening period of six and one-half years. In addition, the NFHS-2 questionnaire covered a number of new or expanded topics with important policy implications, such as reproductive health, women's autonomy, domestic violence, women's nutrition, anaemia, and salt iodization.

    The NFHS-2 survey was carried out in two phases. Ten states were surveyed in the first phase which began in November 1998 and the remaining states (except Tripura) were surveyed in the second phase which began in March 1999. The field staff collected information from 91,196 households in these 25 states and interviewed 89,199 eligible women in these households. In addition, the survey collected information on 32,393 children born in the three years preceding the survey. One health investigator on each survey team measured the height and weight of eligible women and children and took blood samples to assess the prevalence of anaemia.

    SUMMARY OF FINDINGS

    POPULATION CHARACTERISTICS

    Three-quarters (73 percent) of the population lives in rural areas. The age distribution is typical of populations that have recently experienced a fertility decline, with relatively low proportions in the younger and older age groups. Thirty-six percent of the population is below age 15, and 5 percent is age 65 and above. The sex ratio is 957 females for every 1,000 males in rural areas but only 928 females for every 1,000 males in urban areas, suggesting that more men than women have migrated to urban areas.

    The survey provides a variety of demographic and socioeconomic background information. In the country as a whole, 82 percent of household heads are Hindu, 12 percent are Muslim, 3 percent are Christian, and 2 percent are Sikh. Muslims live disproportionately in urban areas, where they comprise 15 percent of household heads. Nineteen percent of household heads belong to scheduled castes, 9 percent belong to scheduled tribes, and 32 percent belong to other backward classes (OBCs). Two-fifths of household heads do not belong to any of these groups.

    Questions about housing conditions and the standard of living of households indicate some improvements since the time of NFHS-1. Sixty percent of households in India now have electricity and 39 percent have piped drinking water compared with 51 percent and 33 percent, respectively, at the time of NFHS-1. Sixty-four percent of households have no toilet facility compared with 70 percent at the time of NFHS-1.

    About three-fourths (75 percent) of males and half (51 percent) of females age six and above are literate, an increase of 6-8 percentage points from literacy rates at the time of NFHS-1. The percentage of illiterate males varies from 6-7 percent in Mizoram and Kerala to 37 percent in Bihar and the percentage of illiterate females varies from 11 percent in Mizoram and 15 percent in Kerala to 65 percent in Bihar. Seventy-nine percent of children age 6-14 are attending school, up from 68 percent in NFHS-1. The proportion of children attending school has increased for all ages, particularly for girls, but girls continue to lag behind boys in school attendance. Moreover, the disparity in school attendance by sex grows with increasing age of children. At age 6-10, 85 percent of boys attend school compared with 78 percent of girls. By age 15-17, 58 percent of boys attend school compared with 40 percent of girls. The percentage of girls 6-17 attending school varies from 51 percent in Bihar and 56 percent in Rajasthan to over 90 percent in Himachal Pradesh and Kerala.

    Women in India tend to marry at an early age. Thirty-four percent of women age 15-19 are already married including 4 percent who are married but gauna has yet to be performed. These proportions are even higher in the rural areas. Older women are more likely than younger women to have married at an early age: 39 percent of women currently age 45-49 married before age 15 compared with 14 percent of women currently age 15-19. Although this indicates that the proportion of women who marry young is declining rapidly, half the women even in the age group 20-24 have married before reaching the legal minimum age of 18 years. On average, women are five years younger than the men they marry. The median age at marriage varies from about 15 years in Madhya Pradesh, Bihar, Uttar Pradesh, Rajasthan, and Andhra Pradesh to 23 years in Goa.

    As part of an increasing emphasis on gender issues, NFHS-2 asked women about their participation in household decisionmaking. In India, 91 percent of women are involved in decision-making on at least one of four selected topics. A much lower proportion (52 percent), however, are involved in making decisions about their own health care. There are large variations among states in India with regard to women's involvement in household decisionmaking. More than three out of four women are involved in decisions about their own health care in Himachal Pradesh, Meghalaya, and Punjab compared with about two out of five or less in Madhya Pradesh, Orissa, and Rajasthan. Thirty-nine percent of women do work other than housework, and more than two-thirds of these women work for cash. Only 41 percent of women who earn cash can decide independently how to spend the money that they earn. Forty-three percent of working women report that their earnings constitute at least half of total family earnings, including 18 percent who report that the family is entirely dependent on their earnings. Women's work-participation rates vary from 9 percent in Punjab and 13 percent in Haryana to 60-70 percent in Manipur, Nagaland, and Arunachal Pradesh.

    FERTILITY AND FAMILY PLANNING

    Fertility continues to decline in India. At current fertility levels, women will have an average of 2.9 children each throughout their childbearing years. The total fertility rate (TFR) is down from 3.4 children per woman at the time of NFHS-1, but is still well above the replacement level of just over two children per woman. There are large variations in fertility among the states in India. Goa and Kerala have attained below replacement level fertility and Karnataka, Himachal Pradesh, Tamil Nadu, and Punjab are at or close to replacement level fertility. By contrast, fertility is 3.3 or more children per woman in Meghalaya, Uttar Pradesh, Rajasthan, Nagaland, Bihar, and Madhya Pradesh. More than one-third to less than half of all births in these latter states are fourth or higher-order births compared with 7-9 percent of births in Kerala, Goa, and Tamil Nadu.

    Efforts to encourage the trend towards lower fertility might usefully focus on groups within the population that have higher fertility than average. In India, rural women and women from scheduled tribes and scheduled castes have somewhat higher fertility than other women, but fertility is particularly high for illiterate women, poor women, and Muslim women. Another striking feature is the high level of childbearing among young women. More than half of women age 20-49 had their first birth before reaching age 20, and women age 15-19 account for almost one-fifth of total fertility. Studies in India and elsewhere have shown that health and mortality risks increase when women give birth at such young ages?both for the women themselves and for their children. Family planning programmes focusing on women in this age group could make a significant impact on maternal and child health and help to reduce fertility.

    INFANT AND CHILD MORTALITY

    NFHS-2 provides estimates of infant and child mortality and examines factors associated with the survival of young children. During the five years preceding the survey, the infant mortality rate was 68 deaths at age 0-11 months per 1,000 live births, substantially lower than 79 per 1,000 in the five years preceding the NFHS-1 survey. The child mortality rate, 29 deaths at age 1-4 years per 1,000 children reaching age one, also declined from the corresponding rate of 33 per 1,000 in NFHS-1. Ninety-five children out of 1,000 born do not live to age five years. Expressed differently, 1 in 15 children die in the first year of life, and 1 in 11 die before reaching age five. Child-survival programmes might usefully focus on specific groups of children with particularly high infant and child mortality rates, such as children who live in rural areas, children whose mothers are illiterate, children belonging to scheduled castes or scheduled tribes, and children from poor households. Infant mortality rates are more than two and one-half times as high for women who did not receive any of the recommended types of maternity related medical care than for mothers who did receive all recommended types of care.

    HEALTH, HEALTH CARE, AND NUTRITION

    Promotion of maternal and child health has been one of the most important components of the Family Welfare Programme of the Government of India. One goal is for each pregnant woman to receive at least three antenatal check-ups plus two tetanus toxoid injections and a full course of iron and folic acid supplementation. In India, mothers of 65 percent of the children

  12. f

    Data from: Population structuring of Channa striata from Indian waters using...

    • tandf.figshare.com
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vishwamitra Singh Baisvar; Mahender Singh; Ravindra Kumar (2023). Population structuring of Channa striata from Indian waters using control region of mtDNA [Dataset]. http://doi.org/10.6084/m9.figshare.7884887.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Vishwamitra Singh Baisvar; Mahender Singh; Ravindra Kumar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Striped snakehead (Channa striata) is a freshwater species of early Miocene period belonging to family Channidae. The genetic variability of the snakehead populations in India was not well known. Present study was undertaken using 149 sequences of control region of mitochondrial DNA from seven geographically distinct populations of Indian water, which resulted in 46 haplotypes with 137 variable nucleotide sites (60 singletons and 77 parsimony informative) and the nucleotide frequencies was: A = 33.0, T = 28.1, G = 15.4, and C = 23.5%. The presence of low-frequency of younger haplotypes with a large number of singletons indicates the absence of dominant haplotype. Hierarchical AMOVA showed highly significant genetic differentiation (FST = 0.56, p 

  13. w

    Global Financial Inclusion (Global Findex) Database 2011 - India

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Apr 15, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2015). Global Financial Inclusion (Global Findex) Database 2011 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/1182
    Explore at:
    Dataset updated
    Apr 15, 2015
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2011
    Area covered
    India
    Description

    Abstract

    Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector - the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies.

    The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.

    Geographic coverage

    The sample excludes the Northeast states and remote islands. The excluded area represents approximately 10% of the total adult population.

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2011 calendar year, covering more than 150,000 adults in 148 economies and representing about 97 percent of the world's population. Since 2005, Gallup has surveyed adults annually around the world, using a uniform methodology and randomly selected, nationally representative samples. The second round of Global Findex indicators was collected in 2014 and is forthcoming in 2015. The set of indicators will be collected again in 2017.

    Surveys were conducted face-to-face in economies where landline telephone penetration is less than 80 percent, or where face-to-face interviewing is customary. The first stage of sampling is the identification of primary sampling units, consisting of clusters of households. The primary sampling units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid.

    Surveys were conducted by telephone in economies where landline telephone penetration is over 80 percent. The telephone surveys were conducted using random digit dialing or a nationally representative list of phone numbers. In selected countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to teach a person in each household, spread over different days and times of year.

    The sample size in India was 3,518 individuals.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup, Inc. also provided valuable input. The questionnaire was piloted in over 20 countries using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.

    Questions on insurance, mobile payments, and loan purposes were asked only in developing economies. The indicators on awareness and use of microfinance insitutions (MFIs) are not included in the public dataset. However, adults who report saving at an MFI are considered to have an account; this is reflected in the composite account indicator.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country- and indicator-specific standard errors, refer to the Annex and Country Table in Demirguc-Kunt, Asli and L. Klapper. 2012. "Measuring Financial Inclusion: The Global Findex." Policy Research Working Paper 6025, World Bank, Washington, D.C.

  14. Is India’s Higher Education System a Case of Elusive Inclusive...

    • figshare.com
    xlsx
    Updated Oct 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bindiya Naik (2024). Is India’s Higher Education System a Case of Elusive Inclusive Development.xlsx The attached file is a data set for reference to the tables, and charts ..xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.27000199.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 26, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Bindiya Naik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    The paper highlights the higher education (HE) landscape in India, which has witnessed an expansionary path since 2000 and presently emerges as one of the largest HE systems globally, is a laggard in terms of Gross Enrolment Ratio (GER) with respect to G20 nations. The policy framework for HE in India since 1968, has been inclusive with provisions for the marginalised segments. Still, there is an urgent need to enhance the capacity at the institutional rather than at the university level, at the districts in India. This will address the regional imbalances and aid in reaping this populous nation's demographic dividend. It is a given that India will not only miss Target 4.3 - for the Sustainable Development Goal to be envisaged by 2030, but also unlikely to achieve the 50% target of GER by 2035, laid out by National Education Policy 2020.

  15. i

    Global Financial Inclusion (Global Findex) Database 2017 - India

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2019). Global Financial Inclusion (Global Findex) Database 2017 - India [Dataset]. https://catalog.ihsn.org/index.php/catalog/7921
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2017
    Area covered
    India
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    Sample excludes Northeast states and remote islands, representing less than 10% of the population.

    Analysis unit

    Individuals

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world’s population (see table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.

    Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer’s gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    The sample size was 3000.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.

    Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank

  16. National Family Health Survey 2015-2016 - India

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Sep 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health and Family Welfare (MoHFW) (2018). National Family Health Survey 2015-2016 - India [Dataset]. https://catalog.ihsn.org/catalog/7365
    Explore at:
    Dataset updated
    Sep 19, 2018
    Dataset provided by
    Ministry of Health and Family Welfare, Government of Indiahttps://www.mohfw.gov.in/
    Authors
    Ministry of Health and Family Welfare (MoHFW)
    Time period covered
    2015 - 2016
    Area covered
    India
    Description

    Abstract

    The 2015-16 National Family Health Survey (NFHS-4), the fourth in the NFHS series, provides information on population, health, and nutrition for India and each state and union territory. For the first time, NFHS-4 provides district-level estimates for many important indicators. All four NFHS surveys have been conducted under the stewardship of the Ministry of Health and Family Welfare (MoHFW), Government of India. MoHFW designated the International Institute for Population Sciences (IIPS), Mumbai, as the nodal agency for the surveys. Funding for NFHS-4 was provided by the United States Agency for International Development (USAID), the United Kingdom Department for International Development (DFID), the Bill and Melinda Gates Foundation (BMGF), UNICEF, UNFPA, the MacArthur Foundation, and the Government of India. Technical assistance for NFHS-4 was provided by ICF, Maryland, USA. Assistance for the HIV component of the survey was provided by the National AIDS Control Organization (NACO) and the National AIDS Research Institute (NARI), Pune.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-54

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The NFHS-4 sample was designed to provide estimates of all key indicators at the national and state levels, as well as estimates for most key indicators at the district level (for all 640 districts in India, as of the 2011 Census). The total sample size of approximately 572,000 households for India was based on the size needed to produce reliable indicator estimates for each district and for urban and rural areas in districts in which the urban population accounted for 30-70 percent of the total district population. The rural sample was selected through a two-stage sample design with villages as the Primary Sampling Units (PSUs) at the first stage (selected with probability proportional to size), followed by a random selection of 22 households in each PSU at the second stage. In urban areas, there was also a two-stage sample design with Census Enumeration Blocks (CEB) selected at the first stage and a random selection of 22 households in each CEB at the second stage. At the second stage in both urban and rural areas, households were selected after conducting a complete mapping and household listing operation in the selected first-stage units.

    The figures of NFHS-4 and that of earlier rounds may not be strictly comparable due to differences in sample size and NFHS-4 will be a benchmark for future surveys. NFHS-4 fieldwork for Bihar was conducted in all 38 districts of the state from 16 March to 8 August 2015 by the Academic Management Studies (AMS) and collected information from 36,772 households, 45,812 women age 15-49 (including 7,464 women interviewed in PSUs in the state module), and 5,872 men age 15-54.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four questionnaires - household, woman's, man's, and biomarker, were used to collect information in 19 languages using Computer Assisted Personal Interviewing (CAPI).

  17. Number of lives covered under health insurance India FY 2016-2024, by...

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of lives covered under health insurance India FY 2016-2024, by business type [Dataset]. https://www.statista.com/statistics/657244/number-of-people-with-health-insurance-india/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    In the fiscal year of 2024, around *** million people across India were covered under health insurance schemes. Of these, the highest number of people were insured under ******************** health insurance schemes, while********************* plans had the lowest number of people. Key figures of public health insurance The gross direct premium income of the Indian health insurance industry was about *** billion Indian rupees in financial year 2021. Public health insurance recorded the highest premium income of over *** billion Indian rupees that year, with the highest share of premiums written in the western state of Maharashtra. The healthcare system India has a decentralized approach to health care and that allows health insurance to be optional. Technically, all citizens are eligible for free healthcare at government facilities, and individual states are responsible for organizing these services. However, the country’s health system is severely underfunded in terms of staff as well as supply shortages. A vast number of people seek care from private providers. Over ** percent of the total healthcare expenditure in the country was from out-of-pocket expenses in fiscal year 2020.

  18. i

    Global Financial Inclusion (Global Findex) Database 2014 - India

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2019). Global Financial Inclusion (Global Findex) Database 2014 - India [Dataset]. https://catalog.ihsn.org/index.php/catalog/6403
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2014
    Area covered
    India
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    National Coverage. Sample excludes Northeast states and remote islands. In addition, some districts in Assam, Bihar, Jammu and Kashmir, Jharkhand, and Uttar Pradesh were replaced because of security concerns. The excluded areas represent less than 10% of the population.

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Sample survey data [ssd]

    Frequency of data collection

    Triennial

    Sampling procedure

    As in the first edition, the indicators in the 2014 Global Findex are drawn from survey data covering almost 150,000 people in more than 140 economies-representing more than 97 percent of the world's population. The survey was carried out over the 2014 calendar year by Gallup, Inc. as part of its Gallup World Poll, which since 2005 has continually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 140 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. The set of indicators will be collected again in 2017.

    Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or is the customary methodology. In most economies the fieldwork is completed in two to four weeks. In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid. In economies where cultural restrictions dictate gender matching, respondents are randomly selected through the Kish grid from among all eligible adults of the interviewer's gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    The sample size in India was 3,000 individuals.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.

    Questions on cash withdrawals, saving using an informal savings club or person outside the family, domestic remittances, school fees, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Asli Demirguc-Kunt, Leora Klapper, Dorothe Singer, and Peter Van Oudheusden, “The Global Findex Database 2014: Measuring Financial Inclusion around the World.” Policy Research Working Paper 7255, World Bank, Washington, D.C.

  19. f

    Demographic characteristics of respondents in Panchkula, India, 2016.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harish Kumar Tiwari; Ian D. Robertson; Mark O’Dea; Abi Tamim Vanak (2023). Demographic characteristics of respondents in Panchkula, India, 2016. [Dataset]. http://doi.org/10.1371/journal.pntd.0007384.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS Neglected Tropical Diseases
    Authors
    Harish Kumar Tiwari; Ian D. Robertson; Mark O’Dea; Abi Tamim Vanak
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Panchkula, India
    Description

    Demographic characteristics of respondents in Panchkula, India, 2016.

  20. w

    Global Financial Inclusion (Global Findex) Database 2021 - India

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/4653
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    India
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    Excluded populations living in Northeast states and remote islands and Jammu and Kashmir. The excluded areas represent less than 10 percent of the total population.

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for India is 3000.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2023). Distribution of projected population growth India 2011-2036 by state [Dataset]. https://www.statista.com/statistics/1155340/india-distribution-of-projected-population-growth-by-state/
Organization logo

Distribution of projected population growth India 2011-2036 by state

Explore at:
Dataset updated
Jul 10, 2023
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
India
Description

The share of projected population increase in Uttar Pradesh, India from 2011 until 2036 is expected to grow by nearly 20 percent. By contrast, the estimated population increase in Uttarakhand is expected to be less than one percent during the same time period.

Why project population?
Population projections for a country are becoming increasingly important now than ever before. They are used primarily by government policy makers and planners to better understand and gauge future demand for basic services that predominantly include water, food and energy. In addition, they also support in indicating major movements that may affect economic development and in turn, employment and labour productivity. Consequently, this leads to amending policies in order to better adapt to the needs of society and to various circumstances.

Demographic projections and health interventions Demographic figures serve the foremost purpose of improving health and health related services among the population. Some of the government interventions include antenatal and neonatal care with the aim of reducing maternal and neonatal mortality and morbidity rates. In addition, it also focuses on improving immunization coverage across the country. Further, demographic estimates help in better preempting the needs of growing populations, such as the geriatric population within a country.

Search
Clear search
Close search
Google apps
Main menu