In 2023, 36.8 percent of Hawaii residents were Asian. A further 28 percent of the population were of two or more races, and 21 percent of Hawaii residents were white in that same year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Hawaii by race. It includes the population of Hawaii across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Hawaii across relevant racial categories.
Key observations
The percent distribution of Hawaii population by race (across all racial categories recognized by the U.S. Census Bureau): 22.51% are white, 1.92% are Black or African American, 0.27% are American Indian and Alaska Native, 37.27% are Asian, 10.31% are Native Hawaiian and other Pacific Islander, 1.68% are some other race and 26.05% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hawaii Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Hawaii County by race. It includes the distribution of the Non-Hispanic population of Hawaii County across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Hawaii County across relevant racial categories.
Key observations
Of the Non-Hispanic population in Hawaii County, the largest racial group is White alone with a population of 61,076 (33.89% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hawaii County Population by Race & Ethnicity. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Two or More Races, Two Races Including Some Other Race (5-year estimate) in Honolulu County, HI (B03002020E015003) from 2009 to 2023 about Hawaii County, HI; Honolulu; latino; hispanic; estimate; persons; 5-year; population; and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Not Hispanic or Latino, Two or More Races (5-year estimate) in Hawaii County, HI (B03002009E015001) from 2009 to 2019 about Hawaii County, HI; HI; non-hispanic; estimate; persons; 5-year; population; Prosperity Scorecard; and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Hawaii population by race and ethnicity. The dataset can be utilized to understand the racial distribution of Hawaii.
The dataset will have the following datasets when applicable
Please note that in case when either of Hispanic or Non-Hispanic population doesnt exist, the respective dataset will not be available (as there will not be a population subset applicable for the same)
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Hawaii by race. It includes the distribution of the Non-Hispanic population of Hawaii across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Hawaii across relevant racial categories.
Key observations
Of the Non-Hispanic population in Hawaii, the largest racial group is Asian alone with a population of 534,056 (41.25% of the total Non-Hispanic population).
https://i.neilsberg.com/ch/hawaii-population-by-race-and-ethnicity.jpeg" alt="Hawaii Non-Hispanic population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hawaii Population by Race & Ethnicity. You can refer the same here
https://www.icpsr.umich.edu/web/ICPSR/studies/13244/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/13244/terms
Summary File 2 contains 100-percent United States decennial Census data, which is the information compiled from the questions asked of all people and about every housing unit. Population items include sex, age, race, Hispanic or Latino origin, household relationship, and group quarters occupancy. Housing items include occupancy status, vacancy status, and tenure (owner occupied or renter occupied). The 100-percent data are presented in 36 population tables ("PCT") and 11 housing tables ("HCT") down to the census tract level. Each table is iterated for 250 population groups: the total population, 132 race groups, 78 American Indian and Alaska Native tribe categories (reflecting 39 individual tribes), and 39 Hispanic or Latino groups. The presentation of tables for any of the 250 population groups is subject to a population threshold of 100 or more people. That is, if there were fewer than 100 people in a specific population group in a specific geographic area, their population and housing characteristics data are not available for that geographic area.
(Excluding those less than 5 years old or speak only English)
Hawaii’s Limited English Proficient (LEP) Population:
A Demographic and Socio-Economic Profile
https://www.icpsr.umich.edu/web/ICPSR/studies/13523/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/13523/terms
Summary File 4 (SF 4) from the United States 2000 Census contains the sample data, which is the information compiled from the questions asked of a sample of all people and housing units. Population items include basic population totals: urban and rural, households and families, marital status, grandparents as caregivers, language and ability to speak English, ancestry, place of birth, citizenship status, year of entry, migration, place of work, journey to work (commuting), school enrollment and educational attainment, veteran status, disability, employment status, industry, occupation, class of worker, income, and poverty status. Housing items include basic housing totals: urban and rural, number of rooms, number of bedrooms, year moved into unit, household size and occupants per room, units in structure, year structure built, heating fuel, telephone service, plumbing and kitchen facilities, vehicles available, value of home, monthly rent, and shelter costs. In Summary File 4, the sample data are presented in 213 population tables (matrices) and 110 housing tables, identified with "PCT" and "HCT" respectively. Each table is iterated for 336 population groups: the total population, 132 race groups, 78 American Indian and Alaska Native tribe categories (reflecting 39 individual tribes), 39 Hispanic or Latino groups, and 86 ancestry groups. The presentation of SF4 tables for any of the 336 population groups is subject to a population threshold. That is, if there are fewer than 100 people (100-percent count) in a specific population group in a specific geographic area, and there are fewer than 50 unweighted cases, their population and housing characteristics data are not available for that geographic area in SF4. For the ancestry iterations, only the 50 unweighted cases test can be performed. See Appendix H: Characteristic Iterations, for a complete list of characteristic iterations.
[Metadata]
- 2015 Census Tracts with population figures from American
Community Survey 5-year estimates. Source: U.S. Census Bureau, 2016.
The
American Community Survey (ACS) is an ongoing survey that provides data
every year ... the 5-year estimates from the ACS are "period" estimates
that represent data collected over a period of time, from 2011 to
2015. For more information about the ACS, please visit https://www.census.gov/programs-surveys/acs/.
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Block Groups (BGs) are defined before tabulation block delineation and numbering, but are clusters of blocks within the same census tract that have the same first digit of their 4-digit census block number from the same decennial census. For example, Census 2000 tabulation blocks 3001, 3002, 3003,.., 3999 within Census 2000 tract 1210.02 are also within BG 3 within that census tract. Census 2000 BGs generally contained between 600 and 3,000 people, with an optimum size of 1,500 people. Most BGs were delineated by local participants in the Census Bureau's Participant Statistical Areas Program (PSAP). The Census Bureau delineated BGs only where the PSAP participant declined to delineate BGs or where the Census Bureau could not identify any local PSAP participant. A BG usually covers a contiguous area. Each census tract contains at least one BG, and BGs are uniquely numbered within census tract. Within the standard census geographic hierarchy, BGs never cross county or census tract boundaries, but may cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. BGs have a valid code range of 0 through 9. BGs coded 0 were intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. For Census 2000, rather than extending a census tract boundary into the Great Lakes or out to the U.S. nautical three-mile limit, the Census Bureau delineated some census tract boundaries along the shoreline or just offshore. The Census Bureau assigned a default census tract number of 0 and BG of 0 to these offshore, water-only areas not included in regularly numbered census tract areas.
[Metadata]
- 2015 Census Hawaiian Homelands with population figures from American
Community Survey 5-year estimates. Source: U.S. Census Bureau, 2016.
The
American Community Survey (ACS) is an ongoing survey that provides data
every year ... the 5-year estimates from the ACS are "period" estimates
that represent data collected over a period of time, from 2011 to
2015. For more information about the ACS, please visit https://www.census.gov/programs-surveys/acs/.
Estimates of demographic parameters such as survival and reproductive success are critical for guiding management efforts focused on species of conservation concern. Unfortunately, reliable demographic parameters are difficult to obtain for any species, but especially for rare or endangered species. Here we derived estimates of adult survival and recruitment in a community of Hawaiian forest birds, including eight native species (of which three are endangered) and two introduced species at Hakalau Forest National Wildlife Refuge, HawaiÊ»i. Integrated population models (IPM) were used to link mark–recapture data (1994–1999) with long-term population surveys (1987–2008). To our knowledge, this is the first time that IPM have been used to characterize demographic parameters of a whole avian community, and provides important insights into the life history strategies of the community. The demographic data were used to test two hypotheses: 1) arthropod specialists, such as the ‘AkiapÅ lÄ â€˜au Hem...
[Metadata]
- 2015 Census County Boundaries with population figures from American
Community Survey 5-year estimates. Source: U.S. Census Bureau, 2016.
The
American Community Survey (ACS) is an ongoing survey that provides data
every year ... the 5-year estimates from the ACS are "period" estimates
that represent data collected over a period of time, from 2011 to
2015. For more information about the ACS, please visit https://www.census.gov/programs-surveys/acs/.
[Metadata]
- 2015 Census County Divisions (CCD) with population figures from American
Community Survey 5-year estimates. Source: U.S. Census Bureau, 2016.
The
American Community Survey (ACS) is an ongoing survey that provides data
every year ... the 5-year estimates from the ACS are "period" estimates
that represent data collected over a period of time, from 2011 to
2015. For more information about the ACS, please visit https://www.census.gov/programs-surveys/acs/.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Where stable source populations of at-risk species exist, translocation may be a reasonable strategy for re-establishing extirpated populations. However, the success rates of such efforts are mixed, necessitating thorough preliminary investigation. Stochastic population modeling can be a useful method of assessing the potential success of translocations. Here, we report on the results of modeling translocation success for the Hawaiian Common Gallinule (‘alae ‘ula; Gallinula galeata sandvicensis), an endangered waterbird endemic to the Hawaiian Islands. Using updated vital rates, we constructed a model simulating three existing extant (wild) source populations and a hypothetical recipient site on another island. We then projected the effects of six different translocation scenarios and sensitivity of the results to variation of three important demographic parameters on the probability of extinction (PE) of the reintroduced and donor populations. Larger translocations, of at least 30 birds, had low probability of extinction in the reintroduced population, but raised extinction risk of the smallest source population. Spacing out translocations in time (e.g., 10 birds translocated in total in three installments over nine years), led to lower PE than translocating all individuals at once (i.e., bulk translocations) for both the source and reintroduced populations. Brood size and hatch-year juvenile survival had a disproportionate impact on reintroduced population viability. Importantly, the reported juvenile survival rate is very near the threshold for population failure. This suggests that post-introduction and subsequent management of wetlands, particularly predator control, could be critical to reintroduction success. We recommend that individuals should be translocated from multiple, genetically distinct subpopulations to reduce the possibility of inbreeding depression. Based on this analysis, the recipient wetland should be sufficiently large that it can support at least 25 pairs of gallinules. Based on recent estimates of population densities on O‘ahu, such a wetland would need to be between 3.75-74.6 ha. Where stable source populations of at-risk species exist, translocation may be a reasonable strategy for re-establishing extirpated populations. However, the success rates of such efforts are mixed, necessitating thorough preliminary investigation. Stochastic population modeling can be a useful method of assessing the potential success of translocations. Here, we report on the results of modeling translocation success for the Hawaiian Common Gallinule (‘alae ‘ula; Gallinula galeata sandvicensis), an endangered waterbird endemic to the Hawaiian Islands. Using updated vital rates, we constructed a model simulating three existing extant (wild) source populations and a hypothetical recipient site on another island. We then projected the effects of six different translocation scenarios and sensitivity of the results to variation of three important demographic parameters on the probability of extinction (PE) of the reintroduced and donor populations. Larger translocations, of at least 30 birds, had low probability of extinction in the reintroduced population, but raised extinction risk of the smallest source population. Spacing out translocations in time (e.g., 10 birds translocated in total in three installments over nine years), led to lower PE than translocating all individuals at once (i.e., bulk translocations) for both the source and reintroduced populations. Brood size and hatch-year juvenile survival had a disproportionate impact on reintroduced population viability. Importantly, the reported juvenile survival rate is very near the threshold for population failure. This suggests that post-introduction and subsequent management of wetlands, particularly predator control, could be critical to reintroduction success. We recommend that individuals should be translocated from multiple, genetically distinct subpopulations to reduce the possibility of inbreeding depression. Based on this analysis, the recipient wetland should be sufficiently large that it can support at least 25 pairs of gallinules. Based on recent estimates of population densities on O‘ahu, such a wetland would need to be between 3.75-74.6 ha. Methods Reproductive rate data (HAGAVitalRates_9-10-23_Export) We acquired nest data from recent monitoring projects run through the state of Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife (DOFAW) on O‘ahu, and graduate dissertation work conducted at Hanalei National Wildlife Refuge on Kaua‘i (by BW). Nests on O‘ahu were located during routine weekly or biweekly surveys using an area-search survey. A team of 3–7 observers walked meandering transects with the goal of locating all nests in a given area. All nests were visually checked 2 times per week until hatching or failure. DOFAW nest monitoring continued throughout the annual cycle. A subset of Hawaiian Gallinule nests on O‘ahu was monitored from January through December 2020–2023. All nests were visually checked at least twice weekly, and a subset was monitored from January through December 2020–2023 using SPYPOINT Solar Dark (GG Telecom, Quebec, Canada) passive infrared cameras (trigger speed: 0.07 s) placed about 1 m from the nest, mounted on a 7.6 cm wide metal post 1.8 m long, fixed with a fully adjustable camera mount that allows a camera angle of 0–90. Cameras were programmed to take 2 images back-to-back immediately upon infrared motion activation. Cameras were programmed to take photos instantly for each activation (Instant setting recovery speed: 0.3 s). Cameras were checked weekly for battery life and SD card data retrieval and were removed either immediately after a nest wasconfirmed failed or after a nest was confirmed successful. A nest was considered successful if at least 1 egg hatched and was considered failed if the eggs all disappeared before the expected hatch date or if signs of predation (e.g., predator scat/tracks in the nest or destroyed eggs adjacent to the nest), flooding (e.g., intact eggs outside nest following an increase in water level or nest submerged under water), or abandonment (e.g., eggs cold to the touch in the morning, hot to the touch in the afternoon) were apparent. On Kaua‘i, nests were found by conducting systematic searches. In wetland units managed strictly for waterbirds, transects spaced 10 m apart were walked, while in taro that was grown on the refuge searches were done by walking the pond perimeter. Although Hawaiian Gallinules can nest year-round (Shallenberger 1977, Byrd and Zeillemaker 1981), searches were concentrated during the main breeding season. Nests also were found incidentally during regular activities by refuge staff and taro farmers. Nests on Kaua‘i were monitored with and without cameras (see Webber 2022 for details of monitoring and assessment of nest fates). All nests were checked every 3–5 d to monitor nest status; if the brood continued to use the nest after hatching and the camera was available, monitoring continued for brood survival data. Brood Survival Data (BroodDatabase_8-24-22) Due to some methodological differences in brood monitoring among datasets compiled in this study, we resampled data to a matching, lowest common temporal resolution. Brood data from Keawawa wetland (O‘ahu) were recorded via multiple daily surveys for the first 60þ d posthatch by a group of trained citizen science volunteers. Brood encounter data on Kaua‘i were collected based on 4 d encounter intervals, recording presence and number of chicks if the brood was detected on any day within the interval. All brood records in our Kaua‘i dataset were collected by BW, and they were monitored by surveying telemetered adults (see Webber 2022 for details). Territories with known nests were monitored starting at what was estimated to be mid-incubation, and visited at least once every 4 d. At James Campbell National Wildlife Refuge (O‘ahu), brood encounters were opportunistic. Except for data from Keawawa, most brood monitoring ended after the first month post-hatch. Based on these data formats, we reduced our combined data to 4 d intervals and the first 30 d post-hatch to avoid estimating parameters with a sparse dataset.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Some Other Race Alone (5-year estimate) in Maui County, HI (B03002018E015009) from 2009 to 2023 about Maui County, HI; HI; latino; hispanic; estimate; persons; 5-year; population; and USA.
It is widely accepted that insular terrestrial biodiversity progresses with island age because colonization and diversification proceed over time. Here we assess whether this principle extends to oceanic island streams. We examined range-wide mtDNA sequence variation in four stream-dwelling species across the Hawaiian archipelago to characterize the relationship between colonization and demographic expansion, and to determine whether either factor reflects island age. We found that colonization and demographic expansion are not related and that neither correspond to island age. The snail Neritina granosa exhibited the oldest colonization time (~2.713 mya) and time since demographic expansion (~282 kya), likely reflecting a preference for lotic habitats most prevalent on young islands. Conversely, gobioid fishes (Awaous stamineus, Eleotris sandwicensis and Sicyopterus stimpsoni) colonized the archipelago only ~0.411-0.935 mya, suggesting ecological opportunities for colonization in this ...
In 2023, 36.8 percent of Hawaii residents were Asian. A further 28 percent of the population were of two or more races, and 21 percent of Hawaii residents were white in that same year.