Population density in 2000 within the boundaries of the Narragansett Bay watershed, the Southwest Coastal Ponds watershed, and the Little Narragansett Bay watershed. The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 2000 10m cell population density raster was produced using Rhode Island (2003-2004) state land use data, Massachusetts (1999) state land use, Connecticut (2001) NLCD land use data, and U.S. Census data (2000). To generate a population estimate (number of persons) for any given area within the boundaries of this raster, use the Zonal Statistics as Table tool to sum the 10m cell density values within your zone dataset (e.g., watershed polygon layer). For more information, please reference the 2017 State of Narragansett Bay & Its Watershed Technical Report (nbep.org).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset consists of three raster datasets representing population density for the years 1990, 2000, and 2010. All three rasters are based on block-level census geography data. The 1990 and 2000 data are derived from data normalized to 2000 block boundaries, while the 2010 data are based on 2010 block boundaries. The 1990 and 2000 data are rasters at 100-meter (m) resolution, while the 2010 data are at 60-m resolution. See details about each dataset in the specific metadata for each raster.
The Raster Based GIS Coverage of Mexican Population is a gridded coverage (1 x 1 km) of Mexican population. The data were converted from vector into raster. The population figures were derived based on available point data (the population of known localities - 30,000 in all). Cell values were derived using a weighted moving average function (Burrough, 1986), and then calculated based on known population by state. The result from this conversion is a coverage whose population data is based on square grid cells rather than a series of vectors. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Instituto Nacional de Estadistica Geografia e Informatica (INEGI).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rasters assocaited with elevation (from the National elevation dataset), slope (created from the elevation dataset using ArcGIS), a Shannon diversity index as a metric of landscape fragmentation (created from the forest/shrub layer using Fragstats), distance to all roads (created in ArcGIS using a road TIGER shapefile), distance to forest/shrubs (created using NLCD 2016 data), human population density (created using data from the US Census Bureau). All rasters are at a 90m resolution.
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020.�A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The zip files contain the following files:SEN_population_v1_0_gridded.tifThis geotiff raster, at a spatial resolution of 3 arc-seconds (approximately 100m at the equator), contains estimates of the total population size per grid cell across Senegal. NA values represent areas that were mapped as unsettled based on gridded building patterns derived from building footprints (Dooley and Tatem, 2020). These data are stored as floating-point numbers rather than integers to avoid rounding errors in aggregated population totals for larger areas.SEN _population_v1_0_agesex.zipThis zip file contains the following two raster files:SEN_population_v1_0_gridded_female.tif This geotiff raster, at a spatial resolution of 3 arc-seconds (approximately 100m at the equator), contains estimates of the total female population size per grid cell across Senegal. NA values represent areas that were mapped as unsettled based on gridded building patterns derived from building footprints (Dooley and Tatem, 2020). These data are stored as floating-point numbers rather than integers to avoid rounding errors in aggregated population totals for larger areas.SEN_population_v1_0_gridded_male.tif This geotiff raster, at a spatial resolution of 3 arc-seconds (approximately 100m at the equator), contains estimates of the total male population size per grid cell across Senegal. NA values represent areas that were mapped as unsettled based on gridded building patterns derived from building footprints (Dooley and Tatem, 2020). These data are stored as floating-point numbers rather than integers to avoid rounding errors in aggregated population totals for larger areas.Note, these data are operational population estimates and are not official government statistics.The downloadable Metadata provides more information about Source Data, Methods Overview, Assumptions & Limitations and Works and Data Cited.Contact release@worldpop.org for more information or go here.Data Citation: Qader S. H., Abbott T., Boytinck, E., Kuepie, M., Lazar A. N., Tatem A. J. 2022. Census disaggregated gridded population estimates for Senegal (2020), version 1.0. University of Southampton. doi:10.5258/SOTON/WP00730These data were produced by the WorldPop Research Group at the University of Southampton. This work is part of the GRID3 (Geo-Referenced Infrastructure and Demographic Data for Development) programme funded by the Bill & Melinda Gates Foundation (BMGF) and the United Kingdom’s Foreign, Commonwealth & Development Office. It is implemented by Columbia University’s Center for International Earth Science Information Network (CIESIN), the United Nations Population Fund (UNFPA), WorldPop at the University of Southampton, and the Flowminder Foundation.
Population density in 2000 within the boundaries of the Narragansett Bay watershed, the Southwest Coastal Ponds watershed, and the Little Narragansett Bay watershed. The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 2000 population density (persons per acre) raster was produced using Rhode Island (2003-2004) state land use data, Massachusetts (1999) state land use, Connecticut (2001) NLCD land use data, and U.S. Census data (2000). This raster is appropriate for mapping purposes, as raster values have been converted to persons per acre. To generate population estimates (number of persons), use the 10m cell population rasters. For more information, please reference the 2017 State of Narragansett Bay & Its Watershed Technical Report (nbep.org).
The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 10 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research communities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.
This dataset contains the number of inhabitants per km² for the reference year 2006 and located within the Grid_ETRS89-LAEA_1K. The data set should be referred to GEOSTAT_Grid_POP_2006_1K. The dataset is compiled from the following data sources: aggregated residential population for the year 2006 (AT, SE, FI, SI, NL); estimated residential population for the year 2006 based on mixed national sources (EE, PT, FR, NO, PL, UK (England, Wales)); disaggregated residential population for the year 2006 using using population statistics at LAU2 level for 2006 as data input and Soil Sealing and Corine LC 2006 (BE, BG, CH, CZ, DE, EL, ES, HU, IE, IS, IT, LI, LT, LU, LV, MT, RO, SK, UK (Scotland, Northern Ireland) as ancillary data for the disaggregation. No data available for CY due to absent LAU2 data for Cyprus for the reference year 2006. The dataset is based on a product of the GEOSTAT project which is supported by the European Commission and the European Forum for Geostatistics EFGS. This abstract is based on the abstract provided with the original dataset (CSV file).
Grid of population density in the conterminous United States at a resolution of one kilometer. The grid was converted from an ASCII file obtained from the Consortium for International Earth Science Information Network (CIESIN).
The geographic distribution of human population is key to understanding the effects of humans on the natural world and how natural events such as storms, earthquakes, and other natural phenomenon affect humans. Dataset SummaryThis layer was created with a model that combines imagery, road intersection density, populated places, and urban foot prints to create a likelihood surface. The likelihood surface is then used to create a raster of population with a cell size of 0.00221 degrees (approximately 250 meters).The population raster is created usingDasymetriccartographic methods to allocate the population values in over 1.6 million census polygons covering the world.The population of each polygon was normalized to the 2013 United Nations population estimates by country.Each cell in this layer has an integer value depicting the number of people that are likely to reside in that cell. Tabulations based on these values should result in population totals that more accurately reflect the population of areas of several square kilometers.This layer has global coverage and was published by Esri in 2014.More information about this layer is available:Building the Most Detailed Population Map in the World
This 30-meter resolution raster data set of land cover for the conterminous United States ("NLCDep0306") was designed to describe conditions representative of the year 2000 and is the result of overlaying enhanced 1992 National Land Cover Data with 1990 and 2000 population data at the block group geographic level. Any area (excluding water, developed land, or wetlands) with population density of less than 1,000 people per square mile in 1990 and at least 1,000 people per square mile in 2000 was reclassified as "newly urbanized" land in the derivative product. Areas of water, developed land, or wetlands existing in the original national land-cover data set were preserved. This data set supersedes the one called "Enhanced National Land Cover Data 1992 revised with 2000 population data to indicate urban development between 1992 and 2000" ("NLCDep0905") dated September 2005. NLCDep0905 coded any area having 2000 population density of at least 1,000 people per square mile as being recently urbanized and did not consider that the area could already have been urbanized in 1990. The approach used in developing NLCDep0905 was determined to have misclassified lands that already were urban in 1990 as newly urbanized and therefore overrepresented new urban land.
The Gridded Population of the World, Version 4 (GPWv4): Basic Demographic Characteristics, Revision 11 consists of estimates of human population by age and sex as counts (number of persons per pixel) and densities (number of persons per square kilometer), consistent with national censuses and population registers, for the year 2010. To estimate the male and female populations by age in 2010, the proportions of males and females in each 5-year age group from ages 0-4 to ages 85+ for the given census year were calculated. These proportions were then applied to the 2010 estimates of the total population to obtain 2010 estimates of male and female populations by age. In some cases, the spatial resolution of the age and sex proportions was coarser than the resolution of the total population estimates to which they were applied. The population density rasters were created by dividing the population count rasters by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data source file is a 10-layered GeoTIFF file, derived from the raster data source GRTSmaster_habitats (link). Both GeoTIFFs (GRTSmaster_habitats, GRTSmh_brick) use the INT4S datatype. The GRTSmh_brick data source (resolution 32 m) holds the decimal integer ranking numbers of 10 hierarchical levels of the GRTS cell addresses, including the one from GRTSmaster_habitats (with GRTS cell addresses at the resolution level).
See R-code in the GitHub repository 'n2khab-preprocessing' at commit ecadaf5 for its creation from the GRTSmaster_habitats data source.
A reading function to return the data source in a standardized way into the R environment is provided by the R-package n2khab.
The higher-level ranking numbers of the RasterBrick allow spatially balanced samples at lower spatial resolution than that of 32 m, and can also be used for aggregation purposes. The provided hierarchical levels correspond to the resolutions vector 32 * 2^(0:9) (minimum: 32 meters, maximum: 16384 meters).
Beware that not all GRTS ranking numbers are present in the data source, as the original GRTS raster has been clipped with the Flemish outer borders (i.e., not excluding the Brussels Capital Region).
The Global Human Settlement Layer (GHSL) project is supported by European Commission, Joint Research Center and Directorate-General for Regional and Urban Policy. The GHSL produces new global spatial information, evidence-based analytics, and knowledge describing the human presence in the planet.
The GHSL relies on the design and implementation of new spatial data mining technologies allowing to process automatically and extract analytics and knowledge from large amount of heterogeneous data including: global, fine-scale satellite image data streams, census data, and crowd sources or volunteering geographic information sources. Spatial data reporting objectively and systematically about the presence of population and built-up infrastructures are necessary for any evidence-based modelling or assessing of i) human and physical exposure to threats as environmental contamination and degradation, natural disasters and conflicts, ii) impact of human activities on ecosystems, and iii) access to resources.
This spatial raster dataset depicts the distribution and density of population, expressed as the number of people per cell. Residential population estimates for target years 1975, 1990, 2000 and 2015 provided by CIESIN GPWv4 were disaggregated from census or administrative units to grid cells, informed by the distribution and density of built-up as mapped in the Global Human Settlement Layer (GHSL) global layer per corresponding epoch.
https://eidc.ceh.ac.uk/licences/open-government-licence-ceh-ons/plainhttps://eidc.ceh.ac.uk/licences/open-government-licence-ceh-ons/plain
This dataset contains gridded population with a spatial resolution of 1 km x 1 km for the UK based on Census 2011 and Land Cover Map 2007 input data. Data on population distribution for the United Kingdom is available from statistical offices in England, Wales, Northern Ireland and Scotland and provided to the public e.g. via the Office for National Statistics (ONS). Population data is typically provided in tabular form or, based on a range of different geographical units, in file types for geographical information systems (GIS), for instance as ESRI Shapefiles. The geographical units reflect administrative boundaries at different levels of detail, from Devolved Administration to Output Areas (OA), wards or intermediate geographies . While the presentation of data on the level of these geographical units is useful for statistical purposes, accounting for spatial variability for instance of environmental determinants of public health requires a more spatially homogeneous population distribution. For this purpose, the dataset presented here combines 2011 UK Census population data on Output Area level with Land Cover Map 2007 land-use classes 'urban' and 'suburban' to create a consistent and comprehensive gridded population data product at 1 km x 1 km spatial resolution. The mapping product is based on British National Grid (OSGB36 datum).
Population counts at 1000 m resolution.
These spatial raster datasets depict the distribution and density of population, expressed as the number of people per cell. Residential population estimates for target years 1975, 1990, 2000, and 2015 provided by CIESIN were disaggregated from census or administrative units to grid cells, informed by the distribution and density of built-up as mapped in the Global Human Settlement Layer (GHSL) global layers for 1975, 1990, 2000, and 2014. Values are expressed as decimals (‘Float’).”
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population raster approximately 5x5km2 across Madagascar.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The urban–rural continuum classifies the global population, allocating rural populations around differently-sized cities. The classification is based on four dimensions: population distribution, population density, urban center location, and travel time to urban centers, all of which can be mapped globally and consistently and then aggregated as administrative unit statistics.Using spatial data, we matched all rural locations to their urban center of reference based on the time needed to reach these urban centers. A hierarchy of urban centers by population size (largest to smallest) is used to determine which center is the point of “reference” for a given rural location: proximity to a larger center “dominates” over a smaller one in the same travel time category. This was done for 7 urban categories and then aggregated, for presentation purposes, into “large cities” (over 1 million people), “intermediate cities” (250,000 –1 million), and “small cities and towns” (20,000–250,000).Finally, to reflect the diversity of population density across the urban–rural continuum, we distinguished between high-density rural areas with over 1,500 inhabitants per km2 and lower density areas. Unlike traditional functional area approaches, our approach does not define urban catchment areas by using thresholds, such as proportion of people commuting; instead, these emerge endogenously from our urban hierarchy and by calculating the shortest travel time.Urban-Rural Catchment Areas (URCA).tif is a raster dataset of the 30 urban–rural continuum categories for the urban–rural continuum showing the catchment areas around cities and towns of different sizes. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration. The raster also allows for visualizing a simplified continuum created by grouping the seven urban agglomerations into 4 categories.Urban-Rural Catchment Areas (URCA).tif is in GeoTIFF format, band interleaved with LZW compression, suitable for use in Geographic Information Systems and statistical packages. The data type is byte, with pixel values ranging from 1 to 30. The no data value is 128. It has a spatial resolution of 30 arc seconds, which is approximately 1km at the equator. The spatial reference system (projection) is EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long). The geographic extent is 83.6N - 60S / 180E - 180W. The same tif file is also available as an ESRI ArcMap MapPackage Urban-Rural Catchment Areas.mpkFurther details are in the ReadMe_data_description.docx
Population density in 2000 within the boundaries of the Narragansett Bay watershed, the Southwest Coastal Ponds watershed, and the Little Narragansett Bay watershed. The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 2000 10m cell population density raster was produced using Rhode Island (2003-2004) state land use data, Massachusetts (1999) state land use, Connecticut (2001) NLCD land use data, and U.S. Census data (2000). To generate a population estimate (number of persons) for any given area within the boundaries of this raster, use the Zonal Statistics as Table tool to sum the 10m cell density values within your zone dataset (e.g., watershed polygon layer). For more information, please reference the 2017 State of Narragansett Bay & Its Watershed Technical Report (nbep.org).