78 datasets found
  1. f

    Data from: RESEARCH METHODOLOGY FOR NOVELTY TECHNOLOGY

    • scielo.figshare.com
    • search.datacite.org
    jpeg
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    P.C. Lai (2023). RESEARCH METHODOLOGY FOR NOVELTY TECHNOLOGY [Dataset]. http://doi.org/10.6084/m9.figshare.7482734.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SciELO journals
    Authors
    P.C. Lai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract This paper contributes to the existing literature by reviewing the research methodology and the literature review with the focus on potential applications for the novelty technology of the single platform E-payment. These included, but were not restricted to the subjects, population, sample size requirement, data collection method and measurement of variables, pilot study and statistical techniques for data analysis. The reviews will shed some light and potential applications for future researchers, students and others to conceptualize, operationalize and analyze the underlying research methodology to assist in the development of their research methodology.

  2. i

    Estimating the Size of Populations through a Household Survey 2011 - Rwanda

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Oct 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rwanda Biomedical Center/ Institute of HIV/AIDS, Disease Prevention and Control Department (RBC/IHDPC) (2017). Estimating the Size of Populations through a Household Survey 2011 - Rwanda [Dataset]. https://catalog.ihsn.org/index.php/catalog/7192
    Explore at:
    Dataset updated
    Oct 10, 2017
    Dataset authored and provided by
    Rwanda Biomedical Center/ Institute of HIV/AIDS, Disease Prevention and Control Department (RBC/IHDPC)
    Time period covered
    2011
    Area covered
    Rwanda
    Description

    Abstract

    The Estimating the Size of Populations through a Household Survey (EPSHS), sought to assess the feasibility of the network scale-up and proxy respondent methods for estimating the sizes of key populations at higher risk of HIV infection and to compare the results to other estimates of the population sizes. The study was undertaken based on the assumption that if these methods proved to be feasible with a reasonable amount of data collection for making adjustments, countries would be able to add this module to their standard household survey to produce size estimates for their key populations at higher risk of HIV infection. This would facilitate better programmatic responses for prevention and caring for people living with HIV and would improve the understanding of how HIV is being transmitted in the country.

    The specific objectives of the ESPHS were: 1. To assess the feasibility of the network scale-up method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 2. To assess the feasibility of the proxy respondent method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 3. To estimate the population size of MSM, FSW, IDU, and clients of sex workers in Rwanda at a national level; 4. To compare the estimates of the sizes of key populations at higher risk for HIV produced by the network scale-up and proxy respondent methods with estimates produced using other methods; and 5. To collect data to be used in scientific publications comparing the use of the network scale-up method in different national and cultural environments.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Individual

    Sampling procedure

    The Estimating the Size of Populations through a Household Survey (ESPHS) used a two-stage sample design, implemented in a representative sample of 2,125 households selected nationwide in which all women and men age 15 years and above where eligible for an individual interview. The sampling frame used was the preparatory frame for the Rwanda Population and Housing Census (RPHC), which was conducted in 2012; it was provided by the National Institute of Statistics of Rwanda (NISR).

    The sampling frame was a complete list of natural villages covering the whole country (14,837 villages). Two strata were defined: the city of Kigali and the rest of the country. One hundred and thirty Primary Sampling Units (PSU) were selected from the sampling frame (35 in Kigali and 95 in the other stratum). To reduce clustering effect, only 20 households were selected per cluster in Kigali and 15 in the other clusters. As a result, 33 percent of the households in the sample were located in Kigali.

    The list of households in each cluster was updated upon arrival of the survey team in the cluster. Once the listing had been updated, a number was assigned to each existing household in the cluster. The supervisor then identified the households to be interviewed in the survey by using a table in which the households were randomly pre-selected. This table also provided the list of households pre-selected for each of the two different definitions of what it means "to know" someone.

    For further details on sample design and implementation, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Estimating the Size of Populations through a Household Survey (ESPHS) used two types of questionnaires: a household questionnaire and an individual questionnaire. The same individual questionnaire was used to interview both women and men. In addition, two versions of the individual questionnaire were developed, using two different definitions of what it means “to know” someone. Each version of the individual questionnaire was used in half of the selected households.

    Cleaning operations

    The processing of the ESPHS data began shortly after the fieldwork commenced. Completed questionnaires were returned periodically from the field to the SPH office in Kigali, where they were entered and checked for consistency by data processing personnel who were specially trained for this task. Data were entered using CSPro, a programme specially developed for use in DHS surveys. All data were entered twice (100 percent verification). The concurrent processing of the data was a distinct advantage for data quality, because the School of Public Health had the opportunity to advise field teams of problems detected during data entry. The data entry and editing phase of the survey was completed in late August 2011.

    Response rate

    A total of 2,125 households were selected in the sample, of which 2,120 were actually occupied at the time of the interview. The number of occupied households successfully interviewed was 2,102, yielding a household response rate of 99 percent.

    From the households interviewed, 2,629 women were found to be eligible and 2,567 were interviewed, giving a response rate of 98 percent. Interviews with men covered 2,102 of the eligible 2,149 men, yielding a response rate of 98 percent. The response rates do not significantly vary by type of questionnaire or residence.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made to minimize this type of error during the implementation of the Rwanda ESPHS 2011, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ESPHS 2011 is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the ESPHS 2011 sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the ESPHS 2011 is a SAS program. This program uses the Taylor linearization method for variance estimation for survey estimates that are means or proportions.

    A more detailed description of estimates of sampling errors are presented in Appendix B of the survey report.

  3. u

    Population and Family Health Survey 2012 - Jordan

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2012
    Area covered
    Jordan
    Description

    Abstract

    The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

    The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

    Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

    Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

    The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

    In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

    The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

    Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

    Cleaning operations

    Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

    Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

    Response rate

    In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

    In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

  4. f

    Accounting for Sampling Error When Inferring Population Synchrony from...

    • plos.figshare.com
    doc
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hugues Santin-Janin; Bernard Hugueny; Philippe Aubry; David Fouchet; Olivier Gimenez; Dominique Pontier (2023). Accounting for Sampling Error When Inferring Population Synchrony from Time-Series Data: A Bayesian State-Space Modelling Approach with Applications [Dataset]. http://doi.org/10.1371/journal.pone.0087084
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Hugues Santin-Janin; Bernard Hugueny; Philippe Aubry; David Fouchet; Olivier Gimenez; Dominique Pontier
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundData collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating population synchrony as well as to underestimating the extinction risk of a metapopulation.Methodology/Principal findingsThe aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength.Conclusion/SignificanceThe state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for uncertainty in population size estimates.

  5. f

    A survey on adolescent health information seeking behavior related to...

    • plos.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Somayeh Esmaeilzadeh; Hasan Ashrafi-rizi; Leila Shahrzadi; Firozeh Mostafavi (2023). A survey on adolescent health information seeking behavior related to high-risk behaviors in a selected educational district in Isfahan [Dataset]. http://doi.org/10.1371/journal.pone.0206647
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Somayeh Esmaeilzadeh; Hasan Ashrafi-rizi; Leila Shahrzadi; Firozeh Mostafavi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Isfahan
    Description

    BackgroundsThe characteristics and conditions of growth and development have made adolescence one of the most vital and influential ages for prevention and health promotion, especially in the area of high-risk behaviors. Accordingly, the aim of this study was to determine adolescent health information seeking behavior related to high-risk behaviors in a selected educational district in Isfahan (Iran).MethodologyThe present study was of an applied type, which was conducted using the survey research method. The statistical population consisted of adolescent students at public schools in Isfahan (6519 subjects), and the sample size was determined to be 364 based on Cochran's formula. The sampling method was of a cluster sampling type, and the data collection tool was a researcher-made questionnaire. The validity of the questionnaire was approved by medical librarians, and using the Cronbach's alpha method, the reliability was obtained to be 0.85. SPSS 16 software was used for data analysis at two statistical levels: descriptive and inferential (independent t-test, one-sample t-test, chi-square, Pearson correlation coefficient and Mann-Whitney).Findings"Lack of mobility" was the most important health information need related to adolescent high-risk behaviors. The most important sources to obtain health information related to high-risk behaviors were "the Internet" with a mean score of 3.69 and "virtual social media" with a mean score of 3.49 out of 5. Adolescents had a positive attitude towards health information. The most important barriers to seeking health information were mentioned as follows: "difficulty in determining the quality of information found", "absence of appropriate information", and "concerns about the disclosure of their problems or illness to others". From the perspective of adolescents, the most important criterion for the evaluation of information quality was "the trueness and correctness of the information" and the need for health information related to high-risk behaviors was higher in girls than in boys.Conclusions/SignificanceConsidering adolescents’ positive attitude towards use of health information, it is necessary to put valid information at their disposal through different information resources, taking into account their level of information literacy. Accordingly, medical librarians’ abilities are suggested to be used for the production, evaluation, and introduction of health-related reading materials in the field of high-risk behaviors in easy language and suitable for adolescents.

  6. Financial Literacy and Financial Services Survey 2011 - Bosnia and...

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IPSOS (2021). Financial Literacy and Financial Services Survey 2011 - Bosnia and Herzegovina [Dataset]. https://microdata.unhcr.org/index.php/catalog/396
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    IPSOShttp://www.ipsos.com/
    Time period covered
    2011
    Area covered
    Bosnia and Herzegovina
    Description

    Abstract

    The survey on financial literacy among the citizens of Bosnia and Herzegovina was conducted within a larger project that aims at creating the Action Plan for Consumer Protection in Financial Services.

    The conclusion about the need for an Action Plan was reached by the representatives of the World Bank, the Federal Ministry of Finance, the Central Bank of Bosnia and Herzegovina, supervisory authorities for entity financial institutions and non-governmental organizations for the protection of consumer rights, based on the Diagnostic Review on Consumer Protection and Financial Literacy in Bosnia and Herzegovina conducted by the World Bank in 2009-2010. This diagnostic review was conducted at the request of the Federal Ministry of Finance, as part of a larger World Bank pilot program to assess consumer protection and financial literacy in developing countries and middle-income countries. The diagnostic review in Bosnia and Herzegovina was the eighth within this project.

    The financial literacy survey, whose results are presented in this report, aims at establishing the basic situation with respect to financial literacy, serving on the one hand as a preparation for the educational activities plan, and on the other as a basis for measuring the efficiency of activities undertaken.

    Geographic coverage

    Data collection was based on a random, nation-wide sample of citizens of Bosnia and Herzegovina aged 18 or older (N = 1036).

    Analysis unit

    Household, individual

    Universe

    Population aged 18 or older

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SUMMARY

    In Bosnia and Herzegovina, as is well known, there is no completely reliable sample frame or information about universe. The main reasons for such a situation are migrations caused by war and lack of recent census data. The last census dates back to 1991, but since then the size and distribution of population has significantly changed. In such a situation, researchers have to combine all available sources of population data to estimate the present size and structure of the population: estimates by official statistical offices and international organizations, voters? lists, list of polling stations, registries of passport and ID holders, data from large random surveys etc.

    The sample was three-stage stratified: in the first stage by entity, in the second by county/region and in the third by type of settlement (urban/rural). This means that, in the first stage, the total sample size was divided in two parts proportionally to number of inhabitants by entity, while in the second stage the subsample size for each entity was further divided by regions/counties. In the third stage, the subsample for each region/county was divided in two categories according to settlement type (rural/urban).

    Taking into the account the lack of a reliable and complete list of citizens to be used as a sample frame, a multistage sampling method was applied. The list of polling stations was used as a frame for the selection of primary sampling units (PSU). Polling station territories are a good choice for such a procedure since they have been recently updated, for the general elections held in October 2010. The list of polling station territories contains a list of addresses of housing units that are certainly occupied.

    In the second stage, households were used as a secondary sampling unit. Households were selected randomly by a random route technique. In total, 104 PSU were selected with an average of 10 respondents per PSU. The respondent from the selected household was selected randomly using the Trohdal-Bryant scheme.

    In total, 1036 citizens were interviewed with a satisfactory response rate of around 60% (table 1). A higher refusal rate is recorded among middle-age groups (table 2). The theoretical margin of error for a random sample of this size is +/-3.0%.

    Due to refusals, the sample structure deviated from the estimated population structure by gender, age and education level. Deviations were corrected by RIM weighting procedure.

    MORE DETAILED INFORMATION

    IPSOS designed a representative sample of approximately 1.000 residents age 18 and over, proportional to the adult populations of each region, based on age, sex, region and town (settlement) type.

    For this research we designed three-stage stratified representative sample. First we stratify sample at entity level, regional level and then at settlement type level for each region.

    Sample universe:

    Population of B&H -18+; 1991 Census figures and estimated population dynamics, census figures of refugees and IDPs, 1996. Central Election Commision - 2008; CIPS - 2008;

    Sampling frame:

    Polling stations territory (approximate size of census units) within strata defined by regions and type of settlements (urban and rural) Polling stations territories are chosen to be used as primary units because it enables the most reliable sample selection, due to the fact that for these units the most complete data are available (dwelling register - addresses)

    Type of sample:

    Three stage random representative stratified sample

    Definition and number of PSU, SSU, TSU, and sampling points

    • PSU - Polling station territory Definition: Polling stations territories are defined by street(s) name(s) and dwelling numbers; each polling station territory comprises approximately 300 households, with exception of the settlements with less than 300 HH which are defined as one unite. Number of PSUs in sample universe: 4710
    • SSU - Household Definition: One household comprises people living in the same apartment and sharing the expenditure for food
    • TSU - Respondent Definition: Member of the HH , 18+ Number of TSUs in sample universe: = 2.966.766
    • Sampling points Approximately 10 respondents per one PSU, total 104

    Stratification, purpose and method

    • First level strata: Federation of B&H Republika Srpska Brc ko District
    • Second level strata: 10 cantons 2 regions -
    • Third level strata: urban and rural settlements
    • Purpose: Optimisation of the sample plan, and reducing the sampling error
    • Method: The strata are defined by criteria of optimal geographical and cultural uniformity

    • Selection procedure of PSU, SSU, and respondent Stratification, purpose and method

    • PSU Type of sampling of the PSU: Polling station territory chosen with probability proportional to size (PPS) Method of selection: Cumulative (Lachirie method)

    • SSU Type of sampling of the SSU: Sample random sampling without replacement Method of selection: Random walk - Random choice of the starting point

    • TSU - Respondent Type of sampling of respondent: Sample random sampling without replacement Method of selection: TCB (Trohdal-Bryant scheme)

    • Sample size N=1036 respondents

    • Sampling error Marginal error +/-3.0%

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey was modelled after the identical survey conducted in Romania. The questionnaire used in the Financial Literacy Survey in Romania was localized for Bosnia and Herzegovina, including adaptations to match the Bosnian context and methodological improvements in wording of questions.

    Cleaning operations

    Before data entry, 100% logic and consistency controls are performed first by local supervisors and once later by staff in central office.

    Verification of correct data entry is assured by using BLAISE system for data entry (commercial product of Netherlands statistics), where criteria for logical and consistency control are defined in advance.

    Response rate

    • Nobody at home: 2,8%
    • Eligible person is not home: 2,8%
    • Refusal : 32,79%
    • Given up after a minimum of two visits: 0,82%
    • Other (excluded after control): 0,29%
    • Finished: 60,5%
  7. w

    Surveying Japanese-Brazilian Households: Comparison of Census-Based,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David McKenzie (2020). Surveying Japanese-Brazilian Households: Comparison of Census-Based, Snowball and Intercept Point Surveys 2006 - Brazil [Dataset]. https://microdata.worldbank.org/index.php/catalog/2231
    Explore at:
    Dataset updated
    Jan 9, 2020
    Dataset provided by
    Johan Mistiaen
    David McKenzie
    Time period covered
    2006 - 2007
    Area covered
    Brazil
    Description

    Abstract

    This study is an experiment designed to compare the performance of three methodologies for sampling households with migrants:

    • a stratified sample using the census to sample census tracts randomly, in which each household is then listed and screened to determine whether or not it has a migrant, with the full length questionnaire then being applied in a second phase only to the households of interest;
    • a snowball survey in which households are asked to provide referrals to other households with migrant members;
    • an intercept point survey (or time-and-space sampling survey), in which individuals are sampled during set time periods at a prespecified set of locations where households in the target group are likely to congregate.

    Researchers from the World Bank applied these methods in the context of a survey of Brazilians of Japanese descent (Nikkei), requested by the World Bank. There are approximately 1.2-1.9 million Nikkei among Brazil’s 170 million population.

    The survey was designed to provide detail on the characteristics of households with and without migrants, to estimate the proportion of households receiving remittances and with migrants in Japan, and to examine the consequences of migration and remittances on the sending households.

    The same questionnaire was used for the stratified random sample and snowball surveys, and a shorter version of the questionnaire was used for the intercept surveys. Researchers can directly compare answers to the same questions across survey methodologies and determine the extent to which the intercept and snowball surveys can give similar results to the more expensive census-based survey, and test for the presence of biases.

    Geographic coverage

    Sao Paulo and Parana states

    Analysis unit

    Japanese-Brazilian (Nikkei) households and individuals

    The 2000 Brazilian Census was used to classify households as Nikkei or non-Nikkei. The Brazilian Census does not ask ethnicity but instead asks questions on race, country of birth and whether an individual has lived elsewhere in the last 10 years. On the basis of these questions, a household is classified as (potentially) Nikkei if it has any of the following: 1) a member born in Japan; 2) a member who is of yellow race and who has lived in Japan in the last 10 years; 3) a member who is of yellow race, who was not born in a country other than Japan (predominantly Korea, Taiwan or China) and who did not live in a foreign country other than Japan in the last 10 years.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    1) Stratified random sample survey

    Two states with the largest Nikkei population - Sao Paulo and Parana - were chosen for the study.

    The sampling process consisted of three stages. First, a stratified random sample of 75 census tracts was selected based on 2000 Brazilian census. Second, interviewers carried out a door-to-door listing within each census tract to determine which households had a Nikkei member. Third, the survey questionnaire was then administered to households that were identified as Nikkei. A door-to-door listing exercise of the 75 census tracts was then carried out between October 13th, 2006, and October 29th, 2006. The fieldwork began on November 19, 2006, and all dwellings were visited at least once by December 22, 2006. The second wave of surveying took place from January 18th, 2007, to February 2nd, 2007, which was intended to increase the number of households responding.

    2) Intercept survey

    The intercept survey was designed to carry out interviews at a range of locations that were frequented by the Nikkei population. It was originally designed to be done in Sao Paulo city only, but a second intercept point survey was later carried out in Curitiba, Parana. Intercept survey took place between December 9th, 2006, and December 20th, 2006, whereas the Curitiba intercept survey took place between March 3rd and March 12th, 2007.

    Consultations with Nikkei community organizations, local researchers and officers of the bank Sudameris, which provides remittance services to this community, were used to select a broad range of locations. Interviewers were assigned to visit each location during prespecified blocks of time. Two fieldworkers were assigned to each location. One fieldworker carried out the interviews, while the other carried out a count of the number of people with Nikkei appearance who appeared to be 18 years old or older who passed by each location. For the fixed places, this count was made throughout the prespecified time block. For example, between 2.30 p.m. and 3.30 p.m. at the sports club, the interviewer counted 57 adult Nikkeis. Refusal rates were carefully recorded, along with the sex and approximate age of the person refusing.

    In all, 516 intercept interviews were collected.

    3) Snowball sampling survey

    The questionnaire that was used was the same as used for the stratified random sample. The plan was to begin with a seed list of 75 households, and to aim to reach a total sample of 300 households through referrals from the initial seed households. Each household surveyed was asked to supply the names of three contacts: (a) a Nikkei household with a member currently in Japan; (b) a Nikkei household with a member who has returned from Japan; (c) a Nikkei household without members in Japan and where individuals had not returned from Japan.

    The snowball survey took place from December 5th to 20th, 2006. The second phase of the snowballing survey ran from January 22nd, 2007, to March 23rd, 2007. More associations were contacted to provide additional seed names (69 more names were obtained) and, as with the stratified sample, an adaptation of the intercept survey was used when individuals refused to answer the longer questionnaire. A decision was made to continue the snowball process until a target sample size of 100 had been achieved.

    The final sample consists of 60 households who came as seed households from Japanese associations, and 40 households who were chain referrals. The longest chain achieved was three links.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    1) Stratified sampling and snowball survey questionnaire

    This questionnaire has 36 pages with over 1,000 variables, taking over an hour to complete.

    If subjects refused to answer the questionnaire, interviewers would leave a much shorter version of the questionnaire to be completed by the household by themselves, and later picked up. This shorter questionnaire was the same as used in the intercept point survey, taking seven minutes on average. The intention with the shorter survey was to provide some data on households that would not answer the full survey because of time constraints, or because respondents were reluctant to have an interviewer in their house.

    2) Intercept questionnaire

    The questionnaire is four pages in length, consisting of 62 questions and taking a mean time of seven minutes to answer. Respondents had to be 18 years old or older to be interviewed.

    Response rate

    1) Stratified random sampling 403 out of the 710 Nikkei households were surveyed, an interview rate of 57%. The refusal rate was 25%, whereas the remaining households were either absent on three attempts or were not surveyed because building managers refused permission to enter the apartment buildings. Refusal rates were higher in Sao Paulo than in Parana, reflecting greater concerns about crime and a busier urban environment.

    2) Intercept Interviews 516 intercept interviews were collected, along with 325 refusals. The average refusal rate is 39%, with location-specific refusal rates ranging from only 3% at the food festival to almost 66% at one of the two grocery stores.

  8. i

    Integrated Biological and Behavioural Surveillance Survey 2007 - Nigeria

    • dev.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Ministry of Health (FMOH) (2019). Integrated Biological and Behavioural Surveillance Survey 2007 - Nigeria [Dataset]. https://dev.ihsn.org/nada/catalog/study/NGA_2007_IBBSS_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Federal Ministry of Health (FMOH)
    Time period covered
    2007
    Area covered
    Nigeria
    Description

    Abstract

    The main objectives of the study were to assess the knowledge and beliefs of high-risk groups about STI and HIV, determine the prevalence of HIV infection and syphilis among these groups and obtain baseline data that will permit comparisons of risk behaviours, HIV infection and syphilis over time.

    Geographic coverage

    Six selected states

    Analysis unit

    State, group, individual

    Universe

    The Integrated Biological and Behavioural Surveillance Survey 2007 covered only males and females aged up to 15-49 years among seven sub-populations at risk of HIV in six selected states of Nigeria, namely Female Sex Workers (both brothel- and non-brothel-based), men who have sex with men (MSM), injecting drug users (IDU), members of the armed forces, police, and transport workers (TW).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    In order to reach a representative sample of all groups involved in the 2007 IBBSS, a number of different sampling techniques were used depending on the group in question, including simple random sampling (SRS), cluster sampling (probability proportionate to size (PPS) for fixed populations), time-location sampling (TLS) and respondent-driven sampling (RDS). For MSM and IDU, the RDS method was used, while a TLS technique was used to select non-brothel-based FSW and TW. The brothel-based FSW, armed forces, and police were selected using a two-stage cluster sampling technique. The take all (TA) sampling method was used when the desired sample size was not attainable based on the results of target population mapping.

    ITLS is a form of cluster sampling that contains both time and location dimensions. TLS provides the opportunity to reach members of a target population who access certain locations at any point in time. The process starts by creating time * location PSU (PSU that have both a time and a location dimensions) from which a random sample is selected. At the second stage all or a sub-sample of randomly selected population members who appear at the site during a designated time interval of fixed length, for example 4 hours, are interviewed. To the extent that all members of a target population access the locations at some point in time, TLS is a probability sampling method because: (i) all population members have a non-zero chance of selection as long as the TLS frame is complete; and (ii) the selection probabilities can be calculated by taking the time dimension as well as the space dimension into account.

    RDS is a method that combines "snowball sampling" with a mathematical model that weights the sample to compensate for the fact that the sample was collected in a non-random way. Characterized by long referral chains (to ensure that all members of the target population can be reached) and a statistical theory of the sampling process which controls for bias including the effects of choice of seeds and differences in network size, RDS overcomes the shortcomings of institutional sampling (coverage) and snow-ball type methods (statistical validity). By making chain-referral into a probability sampling method and consequently resolving the dilemma of a choice between coverage and statistical validity, RDS has become the most appropriate method for reaching the hard-to-reach population groups. The RDS process starts with the recruitment of the initial seeds each of whom recruits a maximum of two to three members from their population group.

    Sampling deviation

    Cluster samples were chosen randomly based on sampling frames developed through the mapping process. This process was to identify places where potential subjects could be reached and sampled. Field work for the mapping exercise was performed over one week. Due to the limited period some hidden populations may not be adequately represented in sampling frames.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was designed in collaboration with FMOH, SFH, CDC, WHO, UNAIDS and other stakeholders. At both central- and state-level trainings, each question in the questionnaire was reviewed and role-played and possible challenges were identified and addressed. The questionnaire of Integrated Biological and Behavioural Surveillance Survey 2007 was grouped into fifteen sections

    Section 0: Identification particularsBackground characteristics Section 1: Background characteristics Section 2: Marriage and partnerships Section 3: Sexual history numbers and types of partners Section 4: Sexual history-regular partners (for those with spouse/live-in sexual partners only; for MSM, female spouse/live-in sexual partners only) Section 5: Sexual history-boy friends/girl friends (for those with boy friends/girl friends sexual partners only; for MSM, female boy friends/girl friends sexual partners only) Section 6: Sexual history-purchasing sex (male only) (for those with commercial sex partners only; for MSM, female commercial sex partners only) Section 7: Sexual history-casual-non regular non-paying sexual partners (for those with casual sexual partners only; for MSM, female casual sexual partners only) Section 8: Selling sex (for female populatios only) Section 9: Social habits (all groups) Section 10: Dru use/needle sharing (all population reporting drug injection in the past 12 months) Section 11: MSM-men who have sex with men (ask all respondents) Section 12: STIs (ask all respondents) Section 13: Knowledge, opinions, and attitudes towards HIV/AIDS (ask all respondents) Section 12: Exposure to interventions

    Cleaning operations

    After data entry, the data was cleaned using STATA 10. Frequency counts were carried out to check consistency and assess cleaniness of the database. The data cleaning also included the following:

    Searching for ages outside the age range criteria; Cross-checking all corresponding skips to the questionnaire; Reviewing the cluster allocations; Cross-checking the questionnaire completion responses from the interviewers in the database with the records in the supervisors log to ensure they matched; Tallying the supervisors log of blood samples collected to ensure that recorded numbers of samples collected matched the results recorded in the database; and Consistency checks involving cross-checking answers to related questions.

    Response rate

    There were 11,175 individuals selected for this study out of whom 0.8% and 8.1% refused to participate in behavioural and biological componenets of the study respectively.

    Non-brothel based FSW had the highest refusal rate of 2.7% and 19.4% for behavioural and biological components respectively, followed by brothel-based FSW at 2.2% and 13.1% respectively. Refusal rates for the behavioural component were less than 0.5% for other groups.

    For the biological component, refusal rates were 3% for police, 0.8% for the armed forces, 1 .2% for TW, 4.6% for MSM, and 3.3% for IDU.

    Sampling error estimates

    No sampling error estimate

    Data appraisal

    A template for the questionnaire was designed with pre-programmed consistency checks for cross-checking answers, including skips and eligibility criteria. Laboratory data forms were collected on a periodic basis from the central laboratories and brought to the same centralized location for data entry. At least 25% of the questionnaires entered daily by each data entry clerk had the behaviour and other non-biological data entered, while 100% double-data entry was achieved for the biological data for quality control purposes. The data entry clerks were supervised by three supervisors who reviewed and validated all questionnaires entered.

  9. Data from: Dealing with assumptions and sampling bias in the estimation of...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karen Cox; Sabrina Neyrinck; Joachim Mergeay (2024). Dealing with assumptions and sampling bias in the estimation of effective population size: A case study in an amphibian population [Dataset]. http://doi.org/10.5061/dryad.j0zpc86ps
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    Research Institute for Nature and Forest
    Authors
    Karen Cox; Sabrina Neyrinck; Joachim Mergeay
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Accurately estimating effective population size (Ne) is essential for understanding evolutionary processes and guiding conservation efforts. This study investigates Ne estimation methods in spatially structured populations using a population of moor frog (Rana arvalis) as a case study. We assessed the behaviour of Ne estimates derived from the linkage disequilibrium (LD) method as we changed the spatial configuration of samples. Moor frog eggs were sampled from 25 breeding patches (i.e., separate vernal ponds, ditches or parts of larger fens) within a single population, revealing an isolation-by-distance pattern and a local spatial genetic structure. Varying buffer sizes around each patch were used to examine the impact of sampling window size on the estimation of effective number of breeders (Nb). Our results indicate a downward bias in LD Nb estimates with increasing buffer size, suggesting an underestimation of Nb. The observed bias is attributed to LD resulting from including genetically divergent individuals (mixture-LD) confounding LD due to drift. This emphasises the significance of considering even subtle spatial genetic patterns. The implications of these findings are discussed, emphasising the need to account for spatial genetic structure to accurately assess population viability and inform conservation efforts. This study contributes to our understanding of the challenges associated with Ne estimation in spatially structured populations and underscores the importance of refining methodologies to address population-specific spatial dynamics for effective conservation planning and management. Methods The study site of c. 200 ha is part of the nature reserve and military domain ‘Klein Schietveld’ in Kapellen near Antwerp, Belgium (51.358 N, 4.495 E; Fig. S1). In March 2017, heathland pools, fens and temporary ponds were screened for the presence of egg clutches possibly belonging to moor frogs. In total, eggs were sampled in 26 locations where clusters of clutches were found. These locations consisted of separate vernal ponds, ditches or parts of larger fens; they are called ‘breeding patches’ from now on. In each breeding patch, up to 50 intact and distinguishable clutches were sampled and three eggs per clutch were taken. The eggs were stored in pond water in a refrigerator until DNA-extraction (maximally a few days after sampling). DNA-extraction was performed on two eggs per clutch. The jelly coats were first removed using a scalpel. DNA was extracted from the embryo’s using DNeasy Blood & Tissue Kit (Qiagen) with a lysis step of one hour and eluted in 70 μl AE buffer (elution performed twice). The integrity of DNA of 10 % of the samples was assessed on 1 % agarose gels, while the DNA concentration of all tissue samples was measured with Quant-iT Picogreen dsDNA Assay Kit (Invitrogen, Thermo Fisher Scientific) using a Synergy HT plate reader (BioTek). In order to make the distinction between samples from two different species, Rana arvalis and R. temporaria, DNA from one egg per clutch and from all larvae was analysed with the RFLP method of Palo and Merilä (2003). The Rana arvalis eggs were genotyped at 19 microsatellite markers via multiplex PCR and genotyping analysis on an ABI 3500 Genetic Analyzer. Allele calls were scored using the GeneMapper v4.1 software with fragment sizes based on GeneScan 600 LIZ Size Standard. Negative controls were included in each 96‐well PCR to allow for detection of reagent contamination. Reproducibility was evaluated using 3 % blindly replicated samples, two to five times within and across well plates. One reference sample was further added to each well plate. Samples with genotypes for less than 50 % of the loci were reanalysed or replaced with genotypes of eggs of the same clutch where possible. The average error rate per locus was 1%. Three markers, Rtempμ4, Rtempμ5 and Rt2Ca2-22, showed no polymorphism and alleles of locus Rtempµ9 could not be identified unambiguously. Locus RECALQ showed deviations from Hardy-Weinberg equilibrium (HWE) in 5 breeding patches and proportions of null alleles higher than 0.20 in at least 10 breeding patches. Also, RlatCa41 deviated from HWE in 7 breeding patches and null alleles in at least 6 patches. Both markers were excluded from further analysis.

  10. f

    Change in Three Population Estimates and Personal Network Size over the...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Habecker; Kirk Dombrowski; Bilal Khan (2023). Change in Three Population Estimates and Personal Network Size over the Original and MoS Estimator. [Dataset]. http://doi.org/10.1371/journal.pone.0143406.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Patrick Habecker; Kirk Dombrowski; Bilal Khan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Change in Three Population Estimates and Personal Network Size over the Original and MoS Estimator.

  11. Afrobarometer Survey 2020 - Niger

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michigan State University (MSU) (2023). Afrobarometer Survey 2020 - Niger [Dataset]. https://microdata.worldbank.org/index.php/catalog/5816
    Explore at:
    Dataset updated
    Apr 17, 2023
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    University of Cape Town (UCT, South Africa)
    Institute for Development Studies (IDS)
    Ghana Centre for Democratic Development (CDD)
    Institute for Empirical Research in Political Economy (IREEP)
    Michigan State University (MSU)
    Time period covered
    2020
    Area covered
    Niger
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, Round 6 (2014-2015) 36 countries, and Round 7 (2016-2018) 34 countries. The survey covered 34 countries in Round 8 (2019-2021).

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Universe

    Citizens of Niger who are 18 years and older

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Niger - Sample size: 1,200 - Sampling Frame: INS/RGP/H 2012 - Sample design: Nationally representative, random, clustered, stratified, multi-stage area probability sample - Stratification: Region and rural-urban location - Stages: PSUs (from strata), start points, households, respondents - PSU selection: Probability Proportionate to Population Size (PPPS) - Cluster size: 8 households per PSU - Household selection: Randomly selected start points, followed by walk pattern using 5/10 interval - Respondent selection: Gender quota filled by alternating interviews between men and women; respondents of appropriate gender listed, after which computer randomly selects individual

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Round 8 questionnaire has been developed by the Questionnaire Committee after reviewing the findings and feedback obtained in previous Rounds, and securing input on preferred new topics from a host of donors, analysts, and users of the data.

    The questionnaire consists of three parts: 1. Part 1 captures the steps for selecting households and respondents, and includes the introduction to the respondent and (pp.1-4). This section should be filled in by the Fieldworker. 2. Part 2 covers the core attitudinal and demographic questions that are asked by the Fieldworker and answered by the Respondent (Q1 – Q100). 3. Part 3 includes contextual questions about the setting and atmosphere of the interview, and collects information on the Fieldworker. This section is completed by the Fieldworker (Q101 – Q123).

    Sampling error estimates

    +/- 3% at 95% confidence level

  12. i

    Multi Country Study Survey 2000-2001 - Romania

    • catalog.ihsn.org
    • apps.who.int
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2019). Multi Country Study Survey 2000-2001 - Romania [Dataset]. http://catalog.ihsn.org/catalog/3862
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    World Health Organization (WHO)
    Time period covered
    2000 - 2001
    Area covered
    Romania
    Description

    Abstract

    In order to develop various methods of comparable data collection on health and health system responsiveness WHO started a scientific survey study in 2000-2001. This study has used a common survey instrument in nationally representative populations with modular structure for assessing health of indviduals in various domains, health system responsiveness, household health care expenditures, and additional modules in other areas such as adult mortality and health state valuations.

    The health module of the survey instrument was based on selected domains of the International Classification of Functioning, Disability and Health (ICF) and was developed after a rigorous scientific review of various existing assessment instruments. The responsiveness module has been the result of ongoing work over the last 2 years that has involved international consultations with experts and key informants and has been informed by the scientific literature and pilot studies.

    Questions on household expenditure and proportionate expenditure on health have been borrowed from existing surveys. The survey instrument has been developed in multiple languages using cognitive interviews and cultural applicability tests, stringent psychometric tests for reliability (i.e. test-retest reliability to demonstrate the stability of application) and most importantly, utilizing novel psychometric techniques for cross-population comparability.

    The study was carried out in 61 countries completing 71 surveys because two different modes were intentionally used for comparison purposes in 10 countries. Surveys were conducted in different modes of in- person household 90 minute interviews in 14 countries; brief face-to-face interviews in 27 countries and computerized telephone interviews in 2 countries; and postal surveys in 28 countries. All samples were selected from nationally representative sampling frames with a known probability so as to make estimates based on general population parameters.

    The survey study tested novel techniques to control the reporting bias between different groups of people in different cultures or demographic groups ( i.e. differential item functioning) so as to produce comparable estimates across cultures and groups. To achieve comparability, the selfreports of individuals of their own health were calibrated against well-known performance tests (i.e. self-report vision was measured against standard Snellen's visual acuity test) or against short descriptions in vignettes that marked known anchor points of difficulty (e.g. people with different levels of mobility such as a paraplegic person or an athlete who runs 4 km each day) so as to adjust the responses for comparability . The same method was also used for self-reports of individuals assessing responsiveness of their health systems where vignettes on different responsiveness domains describing different levels of responsiveness were used to calibrate the individual responses.

    This data are useful in their own right to standardize indicators for different domains of health (such as cognition, mobility, self care, affect, usual activities, pain, social participation, etc.) but also provide a better measurement basis for assessing health of the populations in a comparable manner. The data from the surveys can be fed into composite measures such as "Healthy Life Expectancy" and improve the empirical data input for health information systems in different regions of the world. Data from the surveys were also useful to improve the measurement of the responsiveness of different health systems to the legitimate expectations of the population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The metropolitan, urban and rural population and all .administrative regional units. as defined in Official Europe Union Statistics (NUTS 2) covered proportionately the respective population aged 18 and above. The country was divided into an appropriate number of areas, grouping NUTS regions at whatever level appropriately. The NUTS covered in Romania were the following; Nord-Est, Sud-Est, Sud, Sud-Vest, Vest, Nord-Vest, Centru, Bucuresti.

    The basic sample design was a multi-stage, random probability sample. 100 sampling points were drawn with probability proportional to population size, for a total coverage of the country. The sampling points were drawn after stratification by NUTS 2 region and by degree of urbanisation. They represented the whole territory of the country surveyed and are selected proportionally to the distribution of the population in terms of metropolitan, urban and rural areas.

    In each of the selected sampling points, one address was drawn at random. This starting address forms the first address of a cluster of a maximum of 20 addresses. The remainder of the cluster was selected as every Nth address by standard random route procedure from the initial address. In theory, there is no maximum number of addresses issued per country. Procedures for random household selection and random respondent selection are independent of the interviewer's decision and controlled by the institute responsible. They should be as identical as possible from to country, full functional equivalence being a must.

    At every address up to 4 recalls were made to attempt to achieve an interview with the selected respondent. There was only one interview per household. The final sample size is 1,053 completed interviews.

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    Data Coding At each site the data was coded by investigators to indicate the respondent status and the selection of the modules for each respondent within the survey design. After the interview was edited by the supervisor and considered adequate it was entered locally.

    Data Entry Program A data entry program was developed in WHO specifically for the survey study and provided to the sites. It was developed using a database program called the I-Shell (short for Interview Shell), a tool designed for easy development of computerized questionnaires and data entry (34). This program allows for easy data cleaning and processing.

    The data entry program checked for inconsistencies and validated the entries in each field by checking for valid response categories and range checks. For example, the program didn’t accept an age greater than 120. For almost all of the variables there existed a range or a list of possible values that the program checked for.

    In addition, the data was entered twice to capture other data entry errors. The data entry program was able to warn the user whenever a value that did not match the first entry was entered at the second data entry. In this case the program asked the user to resolve the conflict by choosing either the 1st or the 2nd data entry value to be able to continue. After the second data entry was completed successfully, the data entry program placed a mark in the database in order to enable the checking of whether this process had been completed for each and every case.

    Data Transfer The data entry program was capable of exporting the data that was entered into one compressed database file which could be easily sent to WHO using email attachments or a file transfer program onto a secure server no matter how many cases were in the file. The sites were allowed the use of as many computers and as many data entry personnel as they wanted. Each computer used for this purpose produced one file and they were merged once they were delivered to WHO with the help of other programs that were built for automating the process. The sites sent the data periodically as they collected it enabling the checking procedures and preliminary analyses in the early stages of the data collection.

    Data quality checks Once the data was received it was analyzed for missing information, invalid responses and representativeness. Inconsistencies were also noted and reported back to sites.

    Data Cleaning and Feedback After receipt of cleaned data from sites, another program was run to check for missing information, incorrect information (e.g. wrong use of center codes), duplicated data, etc. The output of this program was fed back to sites regularly. Mainly, this consisted of cases with duplicate IDs, duplicate cases (where the data for two respondents with different IDs were identical), wrong country codes, missing age, sex, education and some other important variables.

  13. Sample size calculation based on the literature review of the outcome...

    • figshare.com
    xls
    Updated Jul 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samira Dishti Irfan; Masud Reza; Mohammad Niaz Morshed Khan; Sharful Islam Khan (2024). Sample size calculation based on the literature review of the outcome variables. [Dataset]. http://doi.org/10.1371/journal.pone.0306051.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 26, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Samira Dishti Irfan; Masud Reza; Mohammad Niaz Morshed Khan; Sharful Islam Khan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sample size calculation based on the literature review of the outcome variables.

  14. Gallup World Poll 2013, June - Afghanistan, Angola, Albania...and 183 more

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Jun 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gallup, Inc. (2022). Gallup World Poll 2013, June - Afghanistan, Angola, Albania...and 183 more [Dataset]. https://catalog.ihsn.org/catalog/8494
    Explore at:
    Dataset updated
    Jun 14, 2022
    Dataset authored and provided by
    Gallup, Inc.http://gallup.com/
    Time period covered
    2005 - 2012
    Area covered
    Albania, Angola, Afghanistan
    Description

    Abstract

    Gallup Worldwide Research continually surveys residents in more than 150 countries, representing more than 98% of the world's adult population, using randomly selected, nationally representative samples. Gallup typically surveys 1,000 individuals in each country, using a standard set of core questions that has been translated into the major languages of the respective country. In some regions, supplemental questions are asked in addition to core questions. Face-to-face interviews are approximately 1 hour, while telephone interviews are about 30 minutes. In many countries, the survey is conducted once per year, and fieldwork is generally completed in two to four weeks. The Country Dataset Details spreadsheet displays each country's sample size, month/year of the data collection, mode of interviewing, languages employed, design effect, margin of error, and details about sample coverage.

    Gallup is entirely responsible for the management, design, and control of Gallup Worldwide Research. For the past 70 years, Gallup has been committed to the principle that accurately collecting and disseminating the opinions and aspirations of people around the globe is vital to understanding our world. Gallup's mission is to provide information in an objective, reliable, and scientifically grounded manner. Gallup is not associated with any political orientation, party, or advocacy group and does not accept partisan entities as clients. Any individual, institution, or governmental agency may access the Gallup Worldwide Research regardless of nationality. The identities of clients and all surveyed respondents will remain confidential.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING AND DATA COLLECTION METHODOLOGY With some exceptions, all samples are probability based and nationally representative of the resident population aged 15 and older. The coverage area is the entire country including rural areas, and the sampling frame represents the entire civilian, non-institutionalized, aged 15 and older population of the entire country. Exceptions include areas where the safety of interviewing staff is threatened, scarcely populated islands in some countries, and areas that interviewers can reach only by foot, animal, or small boat.

    Telephone surveys are used in countries where telephone coverage represents at least 80% of the population or is the customary survey methodology (see the Country Dataset Details for detailed information for each country). In Central and Eastern Europe, as well as in the developing world, including much of Latin America, the former Soviet Union countries, nearly all of Asia, the Middle East, and Africa, an area frame design is used for face-to-face interviewing.

    The typical Gallup Worldwide Research survey includes at least 1,000 surveys of individuals. In some countries, oversamples are collected in major cities or areas of special interest. Additionally, in some large countries, such as China and Russia, sample sizes of at least 2,000 are collected. Although rare, in some instances the sample size is between 500 and 1,000. See the Country Dataset Details for detailed information for each country.

    FACE-TO-FACE SURVEY DESIGN

    FIRST STAGE In countries where face-to-face surveys are conducted, the first stage of sampling is the identification of 100 to 135 ultimate clusters (Sampling Units), consisting of clusters of households. Sampling units are stratified by population size and or geography and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size, otherwise simple random sampling is used. Samples are drawn independent of any samples drawn for surveys conducted in previous years.

    There are two methods for sample stratification:

    METHOD 1: The sample is stratified into 100 to 125 ultimate clusters drawn proportional to the national population, using the following strata: 1) Areas with population of at least 1 million 2) Areas 500,000-999,999 3) Areas 100,000-499,999 4) Areas 50,000-99,999 5) Areas 10,000-49,999 6) Areas with less than 10,000

    The strata could include additional stratum to reflect populations that exceed 1 million as well as areas with populations less than 10,000. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 8

    METHOD 2:

    A multi-stage design is used. The country is first stratified by large geographic units, and then by smaller units within geography. A minimum of 33 Primary Sampling Units (PSUs), which are first stage sampling units, are selected. The sample design results in 100 to 125 ultimate clusters.

    SECOND STAGE

    Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day, and where possible, on different days. If an interviewer cannot obtain an interview at the initial sampled household, he or she uses a simple substitution method. Refer to Appendix C for a more in-depth description of random route procedures.

    THIRD STAGE

    Respondents are randomly selected within the selected households. Interviewers list all eligible household members and their ages or birthdays. The respondent is selected by means of the Kish grid (refer to Appendix C) in countries where face-to-face interviewing is used. The interview does not inform the person who answers the door of the selection criteria until after the respondent has been identified. In a few Middle East and Asian countries where cultural restrictions dictate gender matching, respondents are randomly selected using the Kish grid from among all eligible adults of the matching gender.

    TELEPHONE SURVEY DESIGN

    In countries where telephone interviewing is employed, random-digit-dial (RDD) or a nationally representative list of phone numbers is used. In select countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day. Appointments for callbacks that fall within the survey data collection period are made.

    PANEL SURVEY DESIGN

    Prior to 2009, United States data were collected using The Gallup Panel. The Gallup Panel is a probability-based, nationally representative panel, for which all members are recruited via random-digit-dial methodology and is only used in the United States. Participants who elect to join the panel are committing to the completion of two to three surveys per month, with the typical survey lasting 10 to 15 minutes. The Gallup Worldwide Research panel survey is conducted over the telephone and takes approximately 30 minutes. No incentives are given to panel participants. Worldwide Research Methodology and Codebook Copyright © 2008-2012 Gallup, Inc. All rights reserved. 9

    Research instrument

    QUESTION DESIGN

    Many of the Worldwide Research questions are items that Gallup has used for years. When developing additional questions, Gallup employed its worldwide network of research and political scientists1 to better understand key issues with regard to question development and construction and data gathering. Hundreds of items were developed, tested, piloted, and finalized. The best questions were retained for the core questionnaire and organized into indexes. Most items have a simple dichotomous ("yes or no") response set to minimize contamination of data because of cultural differences in response styles and to facilitate cross-cultural comparisons.

    The Gallup Worldwide Research measures key indicators such as Law and Order, Food and Shelter, Job Creation, Migration, Financial Wellbeing, Personal Health, Civic Engagement, and Evaluative Wellbeing and demonstrates their correlations with world development indicators such as GDP and Brain Gain. These indicators assist leaders in understanding the broad context of national interests and establishing organization-specific correlations between leading indexes and lagging economic outcomes.

    Gallup organizes its core group of indicators into the Gallup World Path. The Path is an organizational conceptualization of the seven indexes and is not to be construed as a causal model. The individual indexes have many properties of a strong theoretical framework. A more in-depth description of the questions and Gallup indexes is included in the indexes section of this document. In addition to World Path indexes, Gallup Worldwide Research questions also measure opinions about national institutions, corruption, youth development, community basics, diversity, optimism, communications, religiosity, and numerous other topics. For many regions of the world, additional questions that are specific to that region or country are included in surveys. Region-specific questions have been developed for predominantly Muslim nations, former Soviet Union countries, the Balkans, sub-Saharan Africa, Latin America, China and India, South Asia, and Israel and the Palestinian Territories.

    The questionnaire is translated into the major conversational languages of each country. The translation process starts with an English, French, or Spanish version, depending on the region. One of two translation methods may be used.

    METHOD 1: Two independent translations are completed. An independent third party, with some knowledge of survey research methods, adjudicates the differences. A professional translator translates the final version back into the source language.

    METHOD 2: A translator

  15. Multi Country Study Survey 2000-2001 - Malta

    • dev.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2019). Multi Country Study Survey 2000-2001 - Malta [Dataset]. https://dev.ihsn.org/nada/catalog/study/MLT_2000_MCSS_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2000 - 2001
    Area covered
    Malta
    Description

    Abstract

    In order to develop various methods of comparable data collection on health and health system responsiveness WHO started a scientific survey study in 2000-2001. This study has used a common survey instrument in nationally representative populations with modular structure for assessing health of indviduals in various domains, health system responsiveness, household health care expenditures, and additional modules in other areas such as adult mortality and health state valuations.

    The health module of the survey instrument was based on selected domains of the International Classification of Functioning, Disability and Health (ICF) and was developed after a rigorous scientific review of various existing assessment instruments. The responsiveness module has been the result of ongoing work over the last 2 years that has involved international consultations with experts and key informants and has been informed by the scientific literature and pilot studies.

    Questions on household expenditure and proportionate expenditure on health have been borrowed from existing surveys. The survey instrument has been developed in multiple languages using cognitive interviews and cultural applicability tests, stringent psychometric tests for reliability (i.e. test-retest reliability to demonstrate the stability of application) and most importantly, utilizing novel psychometric techniques for cross-population comparability.

    The study was carried out in 61 countries completing 71 surveys because two different modes were intentionally used for comparison purposes in 10 countries. Surveys were conducted in different modes of in- person household 90 minute interviews in 14 countries; brief face-to-face interviews in 27 countries and computerized telephone interviews in 2 countries; and postal surveys in 28 countries. All samples were selected from nationally representative sampling frames with a known probability so as to make estimates based on general population parameters.

    The survey study tested novel techniques to control the reporting bias between different groups of people in different cultures or demographic groups ( i.e. differential item functioning) so as to produce comparable estimates across cultures and groups. To achieve comparability, the selfreports of individuals of their own health were calibrated against well-known performance tests (i.e. self-report vision was measured against standard Snellen's visual acuity test) or against short descriptions in vignettes that marked known anchor points of difficulty (e.g. people with different levels of mobility such as a paraplegic person or an athlete who runs 4 km each day) so as to adjust the responses for comparability . The same method was also used for self-reports of individuals assessing responsiveness of their health systems where vignettes on different responsiveness domains describing different levels of responsiveness were used to calibrate the individual responses.

    This data are useful in their own right to standardize indicators for different domains of health (such as cognition, mobility, self care, affect, usual activities, pain, social participation, etc.) but also provide a better measurement basis for assessing health of the populations in a comparable manner. The data from the surveys can be fed into composite measures such as "Healthy Life Expectancy" and improve the empirical data input for health information systems in different regions of the world. Data from the surveys were also useful to improve the measurement of the responsiveness of different health systems to the legitimate expectations of the population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The metropolitan, urban and rural population and all .administrative regional units. as defined in Official Europe Union Statistics (NUTS 2) covered proportionately the respective population aged 18 and above. The country was divided into an appropriate number of areas, grouping NUTS regions at whatever level appropriately. The NUTS covered in Malta were the following; Inner Harbour Region, Outer Harbour Region, South Eastern Region, Western Region, Northern Region, Gozo and Comino.

    The basic sample design was a multi-stage, random probability sample. 50 sampling points were drawn with probability proportional to population size, for a total coverage of the country. The sampling points were drawn after stratification by NUTS 2 region and by degree of urbanisation. They represented the whole territory of the country surveyed and are selected proportionally to the distribution of the population in terms of metropolitan, urban and rural areas.

    In each of the selected sampling points, one address was drawn at random. This starting address forms the first address of a cluster of a maximum of 20 addresses. The remainder of the cluster was selected as every Nth address by standard random route procedure from the initial address. In theory, there is no maximum number of addresses issued per country. Procedures for random household selection and random respondent selection are independent of the interviewer's decision and controlled by the institute responsible. They should be as identical as possible from to country, full functional equivalence being a must.

    At every address up to 4 recalls are made to attempt to achieve an interview with the selected respondent. There was only one interview per household. The final sample size is 500 completed interviews.

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    Data Coding At each site the data was coded by investigators to indicate the respondent status and the selection of the modules for each respondent within the survey design. After the interview was edited by the supervisor and considered adequate it was entered locally.

    Data Entry Program A data entry program was developed in WHO specifically for the survey study and provided to the sites. It was developed using a database program called the I-Shell (short for Interview Shell), a tool designed for easy development of computerized questionnaires and data entry (34). This program allows for easy data cleaning and processing.

    The data entry program checked for inconsistencies and validated the entries in each field by checking for valid response categories and range checks. For example, the program didn’t accept an age greater than 120. For almost all of the variables there existed a range or a list of possible values that the program checked for.

    In addition, the data was entered twice to capture other data entry errors. The data entry program was able to warn the user whenever a value that did not match the first entry was entered at the second data entry. In this case the program asked the user to resolve the conflict by choosing either the 1st or the 2nd data entry value to be able to continue. After the second data entry was completed successfully, the data entry program placed a mark in the database in order to enable the checking of whether this process had been completed for each and every case.

    Data Transfer The data entry program was capable of exporting the data that was entered into one compressed database file which could be easily sent to WHO using email attachments or a file transfer program onto a secure server no matter how many cases were in the file. The sites were allowed the use of as many computers and as many data entry personnel as they wanted. Each computer used for this purpose produced one file and they were merged once they were delivered to WHO with the help of other programs that were built for automating the process. The sites sent the data periodically as they collected it enabling the checking procedures and preliminary analyses in the early stages of the data collection.

    Data quality checks Once the data was received it was analyzed for missing information, invalid responses and representativeness. Inconsistencies were also noted and reported back to sites.

    Data Cleaning and Feedback After receipt of cleaned data from sites, another program was run to check for missing information, incorrect information (e.g. wrong use of center codes), duplicated data, etc. The output of this program was fed back to sites regularly. Mainly, this consisted of cases with duplicate IDs, duplicate cases (where the data for two respondents with different IDs were identical), wrong country codes, missing age, sex, education and some other important variables.

  16. f

    Integrated Household Survey 1993 - South Africa

    • microdata.fao.org
    • catalog.ihsn.org
    • +3more
    Updated Nov 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern Africa Labour and Development Research Unit (2022). Integrated Household Survey 1993 - South Africa [Dataset]. https://microdata.fao.org/index.php/catalog/1526
    Explore at:
    Dataset updated
    Nov 8, 2022
    Dataset authored and provided by
    Southern Africa Labour and Development Research Unit
    Time period covered
    1993
    Area covered
    South Africa
    Description

    Abstract

    The Project for Statistics on Living standards and Development was a countrywide World Bank Living Standards Measurement Survey. It covered approximately 9000 households, drawn from a representative sample of South African households. The fieldwork was undertaken during the nine months leading up to the country's first democratic elections at the end of April 1994. The purpose of the survey was to collect statistical information about the conditions under which South Africans live in order to provide policymakers with the data necessary for planning strategies. This data would aid the implementation of goals such as those outlined in the Government of National Unity's Reconstruction and Development Programme.

    Geographic coverage

    National

    Analysis unit

    Households

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    (a) SAMPLE SIZE

    Sample size is 9,000 households. The sample design adopted for the study was a two-stage self-weighting design in which the first stage units were Census Enumerator Subdistricts (ESDs, or their equivalent) and the second stage were households. The advantage of using such a design is that it provides a representative sample that need not be based on accurate census population distribution.in the case of South Africa, the sample will automatically include many poor people, without the need to go beyond this and oversample the poor. Proportionate sampling as in such a self-weighting sample design offers the simplest possible data files for further analysis, as weights do not have to be added. However, in the end this advantage could not be retained, and weights had to be added. The sampling frame was drawn up on the basis of small, clearly demarcated area units, each with a population estimate. The nature of the self-weighting procedure adopted ensured that this population estimate was not important for determining the final sample, however. For most of the country, census ESDs were used. Where some ESDs comprised relatively large populations as for instance in some black townships such as Soweto, aerial photographs were used to divide the areas into blocks of approximately equal population size. In other instances, particularly in some of the former homelands, the area units were not ESDs but villages or village groups. In the sample design chosen, the area stage units (generally ESDs) were selected with probability proportional to size, based on the census population.

    (b) SAMPLE DESIGN

    Systematic sampling was used throughout that is, sampling at fixed interval in a list of ESDs, starting at a randomly selected starting point. Given that sampling was self-weighting, the impact of stratification was expected to be modest. The main objective was to ensure that the racial and geographic breakdown approximated the national population distribution. This was done by listing the area stage units (ESDs) by statistical region and then within the statistical region by urban or rural. Within these sub-statistical regions, the ESDs were then listed in order of percentage African. The sampling interval for the selection of the ESDs was obtained by dividing the 1991 census population of 38,120,853 by the 300 clusters to be selected. This yielded 105,800. Starting at a randomly selected point, every 105,800th person down the cluster list was selected. This ensured both geographic and racial diversity (ESDs were ordered by statistical sub-region and proportion of the population African). In three or four instances, the ESD chosen was judged inaccessible and replaced with a similar one. In the second sampling stage the unit of analysis was the household. In each selected ESD a listing or enumeration of households was carried out by means of a field operation. From the households listed in an ESD a sample of households was selected by systematic sampling. Even though the ultimate enumeration unit was the household, in most cases "stands" were used as enumeration units. However, when a stand was chosen as the enumeration unit all households on that stand had to be interviewed. Census population data, however, was available only for 1991. An assumption on population growth was thus made to obtain an approximation of the population size for 1993, the year of the survey. The sampling interval at the level of the household was determined in the following way: Based on the decision to have a take of 125 individuals on average per cluster (i.e. assuming 5 members per household to give an average cluster size of 25 households), the interval of households to be selected was determined as the census population divided by 118.1, i.e. allowing for population growth since the census. It was subsequently discovered that population growth was slightly over-estimated, but this had little effect on the findings of the survey. Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described above for the households in ESDs.

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    All the questionnaires were checked when received. Where information was incomplete or appeared contradictory, the questionnaire was sent back to the relevant survey organization. As soon as the data was available, it was captured using local development platform ADE. This was completed in February 1994. Following this, a series of exploratory programs were written to highlight inconsistencies and outlier. For example, all person level files were linked together to ensure that the same person code reported in different sections of the questionnaire corresponded to the same person. The error reports from these programs were compared to the questionnaires and the necessary alterations made. This was a lengthy process, as several files were checked more than once, and completed at the beginning of August 1994. In some cases, questionnaires would contain missing values, or comments that the respondent did not know, or refused to answer a question. These responses are coded in the data files with the following values:

    VALUE MEANING -1 : The data was not available on the questionnaire or form -2 : The field is not applicable -3 : Respondent refused to answer -4 : Respondent did not know answer to question

    Data appraisal

    The data collected in clusters 217 and 218 should be viewed as highly unreliable and therefore removed from the data set. The data currently available on the web site has been revised to remove the data from these clusters. Researchers who have downloaded the data in the past should revise their data sets. For information on the data in those clusters, contact SALDRU http://www.saldru.uct.ac.za/.

  17. n

    Passive acoustic monitoring provides reliable under-estimates of population...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Jun 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Mennill (2022). Passive acoustic monitoring provides reliable under-estimates of population size and longevity in wild Savannah Sparrows [Dataset]. http://doi.org/10.5061/dryad.fxpnvx0v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 2, 2022
    Dataset provided by
    University of Windsor
    Authors
    Daniel Mennill
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Many breeding birds produce conspicuous sounds, providing tremendous opportunities to study free-living birds through acoustic recordings. Traditional methods for studying population size and demographic features depend on labour-intensive field research. Passive acoustic monitoring provides an alternative method for quantifying population size and demographic parameters, but this approach requires careful validation. To determine the accuracy of passive acoustic monitoring for estimating population size and demographic parameters, we used autonomous recorders to sample an island-living population of Savannah Sparrows (Passerculus sandwichensis) over a six-year period. Using the individually distinctive songs of males, we estimated male population size as the number of unique songs detected in the recordings. We analyzed songs across six years to estimate birth year, death year, and longevity. We then compared the estimates to field data in a blind analysis. Estimates of male population size through passive acoustic monitoring were, on average, 72% of the true male population size, with higher accuracy in lower-density years. Estimates of demographic rates were lower than true values by 29% for birth year, 23% for death year, and 29% for longevity. This is the first investigation to estimate longevity with passive acoustic monitoring, and adds to a growing number of studies that have used passive acoustic monitoring to estimate population size. Although passive acoustic monitoring under-estimated true population parametersfeatures, likely due to the high similarity among many male songs, our findings suggest that autonomous recorders can provide reliable estimates of population size and demographic characteristicslongevity in a wild songbird. Methods These data were colelcted following the methods explained in the manuscript "Passive acoustic monitoring provides reliable under-estimates of population size and longevity in wild Savannah Sparrows."

  18. Federal-State Cooperative Program: 1977-1978 Population Estimates

    • icpsr.umich.edu
    ascii
    Updated Feb 16, 1992
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (1992). Federal-State Cooperative Program: 1977-1978 Population Estimates [Dataset]. http://doi.org/10.3886/ICPSR07843.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Feb 16, 1992
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/7843/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7843/terms

    Time period covered
    1977 - 1978
    Area covered
    South Dakota, Georgia, New Hampshire, Washington, New Jersey, Maryland, New Mexico, Rhode Island, District of Columbia, Massachusetts
    Description

    This data collection contains estimates of the total population residing in all counties and county equivalents in the United States for July 1, 1977, and July 1, 1978. Also included are estimates of the components of population change (births, deaths, and net migration) from April 1970 through June 1977. The data were compiled by the Census Bureau with the assistance of designated state agencies in the Federal-State Cooperative Program for Population Estimates. The objective of the program was to develop and publish estimates of the population of counties using standard procedures for data input and methodology. The information included in this dataset was published for each county or county equivalent (e.g., parishes in Louisiana, census divisions in Alaska, and independent cities in Virginia and Missouri) by the Census Bureau.

  19. d

    ScienceBase Item Summary Page

    • datadiscoverystudio.org
    Updated Jan 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). ScienceBase Item Summary Page [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/f7117fa50098409ba2b11259129da6b9/html
    Explore at:
    Dataset updated
    Jan 16, 2017
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  20. n

    Demographic study of a tropical epiphytic orchid with stochastic simulations...

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu (2022). Demographic study of a tropical epiphytic orchid with stochastic simulations of hurricanes, herbivory, episodic recruitment, and logging [Dataset]. http://doi.org/10.5061/dryad.vhhmgqnxd
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 14, 2022
    Dataset provided by
    University of Hawaiʻi at Mānoa
    Florida International University
    The Institute of Ecology and Systematics, National Herbarium of Cuba "Onaney Muñiz"
    Authors
    Haydee Borrero; Ramona Oviedo-Prieto; Julio C. Alvarez; Tamara Ticktin; Mario Cisneros; Hong Liu
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    In a time of global change, having an understanding of the nature of biotic and abiotic factors that drive a species’ range may be the sharpest tool in the arsenal of conservation and management of threatened species. However, such information is lacking for most tropical and epiphytic species due to the complexity of life history, the roles of stochastic events, and the diversity of habitat across the span of a distribution. In this study, we conducted repeated censuses across the core and peripheral range of Trichocentrum undulatum, a threatened orchid that is found throughout the island of Cuba (species core range) and southern Florida (the northern peripheral range). We used demographic matrix modeling as well as stochastic simulations to investigate the impacts of herbivory, hurricanes, and logging (in Cuba) on projected population growth rates (? and ?s) among sites. Methods Field methods Censuses took place between 2013 and 2021. The longest census period was that of the Peripheral population with a total of nine years (2013–2021). All four populations in Cuba used in demographic modeling that were censused more than once: Core 1 site (2016–2019, four years), Core 2 site (2018–2019, two years), Core 3 (2016 and 2018 two years), and Core 4 (2018–2019, two years) (Appendix S1: Table S1). In November 2017, Hurricane Irma hit parts of Cuba and southern Florida, impacting the Peripheral population. The Core 5 population (censused on 2016 and 2018) was small (N=17) with low survival on the second census due to logging. Three additional populations in Cuba were visited only once, Core 6, Core 7, and Core 8 (Table 1). Sites with one census or with a small sample size (Core 5) were not included in the life history and matrix model analyses of this paper due to the lack of population transition information, but they were included in the analysis on the correlation between herbivory and fruit rate, as well as the use of mortality observations from logging for modeling. All Cuban sites were located between Western and Central Cuba, spanning four provinces: Mayabeque (Core 1), Pinar del Rio (Core 2 and Core 6), Matanzas (Core 3 and Core 5), and Sancti Spiritus (Core 4, Core 7, Core 8). At each population of T. undulatum presented in this study, individuals were studied within ~1-km strips where T. undulatum occurrence was deemed representative of the site, mostly occurring along informal forest trails. Once an individual of T. undulatum was located, all trees within a 5-m radius were searched for additional individuals. Since tagging was not permitted, we used a combination of information to track individual plants for the repeated censuses. These include the host species, height of the orchid, DBH of the host tree, and hand-drawn maps. Individual plants were also marked by GPS at the Everglades Peripheral site. If a host tree was found bearing more than one T. undulatum, then we systematically recorded the orchids in order from the lowest to highest as well as used the previous years’ observations in future censuses for individualized notes and size records. We recorded plant size and reproductive variables during each census including: the number of leaves, length of the longest leaf (cm), number of inflorescence stalks, number of flowers, and the number of mature fruits. We also noted any presence of herbivory, such as signs of being bored by M. miamensis, and whether an inflorescence was partially or completely affected by the fly, and whether there was other herbivory, such as D. boisduvalii on leaves. We used logistic regression analysis to examine the effects of year (at the Peripheral site) and sites (all sites) on the presence or absence of inflorescence herbivory at all the sites. Cross tabulation and chi-square analysis were done to examine the associations between whether a plant was able to fruit and the presence of floral herbivory by M. miamensis. The herbivory was scored as either complete or partial. During the orchid population scouting expeditions, we came across a small population in the Matanzas province (Core 5, within 10 km of the Core 3 site) and recorded the demographic information. Although the sampled population was small (N = 17), we were able to observe logging impacts at the site and recorded logging-associated mortality on the subsequent return to the site. Matrix modeling Definition of size-stage classes To assess the life stage transitions and population structures for each plant for each population’s census period we first defined the stage classes for the species. The categorization for each plant’s stage class depended on both its size and reproductive capabilities, a method deemed appropriate for plants (Lefkovitch 1965, Cochran and Ellner 1992). A size index score was calculated for each plant by taking the total number of observed leaves and adding the length of the longest leaf, an indication of accumulated biomass (Borrero et al. 2016). The smallest plant size that attempted to produce an inflorescence is considered the minimum size for an adult plant. Plants were classified by stage based on their size index and flowering capacity as the following: (1) seedlings (or new recruits), i.e., new and small plants with a size index score of less than 6, (2) juveniles, i.e., plants with a size index score of less than 15 with no observed history of flowering, (3) adults, plants with size index scores of 15 or greater. Adult plants of this size or larger are capable of flowering but may not produce an inflorescence in a given year. The orchid’s population matrix models were constructed based on these stages. In general, orchid seedlings are notoriously difficult to observe and easily overlooked in the field due to the small size of protocorms. A newly found juvenile on a subsequent site visit (not the first year) may therefore be considered having previously been a seedling in the preceding year. In this study, we use the discovered “seedlings” as indicatory of recruitment for the populations. Adult plants are able to shrink or transition into the smaller juvenile stage class, but a juvenile cannot shrink to the seedling stage. Matrix elements and population vital rates calculations Annual transition probabilities for every stage class were calculated. A total of 16 site- and year-specific matrices were constructed. When seedling or juvenile sample sizes were < 9, the transitions were estimated using the nearest year or site matrix elements as a proxy. Due to the length of the study and variety of vegetation types with a generally large population size at each site, transition substitutions were made with the average stage transition from all years at the site as priors. If the sample size of the averaged stage was still too small, the averaged transition from a different population located at the same vegetation type was used. We avoided using transition values from populations found in different vegetation types to conserve potential environmental differences. A total of 20% (27/135) of the matrix elements were estimated in this fashion, the majority being seedling stage transitions (19/27) and noted in the Appendices alongside population size (Appendix S1: Table S1). The fertility element transitions from reproductive adults to seedlings were calculated as the number of seedlings produced (and that survived to the census) per adult plant. Deterministic modeling analysis We used integral projection models (IPM) to project the long-term population growth rates for each time period and population. The finite population growth rate (?), stochastic long-term growth rate (?s), and the elasticity were projected for each matrices using R Popbio Package 2.4.4 (Stubben and Milligan 2007, Caswell 2001). The elasticity matrices were summarized by placing each element into one of three categories: fecundity (transition from reproductive adults to seedling stage), growth (all transitions to new and more advanced stage, excluding the fecundity), and stasis (plants that transitioned into the same or a less advanced stage on subsequent census) (Liu et al. 2005). Life table response experiments (LTREs) were conducted to identify the stage transitions that had the greatest effects on observed differences in population growth between select sites and years (i.e., pre-post hurricane impact and site comparisons of same vegetation type). Due to the frequent disturbances that epiphytes in general experience as well as our species’ distribution in hurricane-prone areas, we ran transient dynamic models that assume that the populations censused were not at stable stage distributions (Stott et al. 2011). We calculated three indices for short-term transient dynamics to capture the variation during a 15-year transition period: reactivity, maximum amplification, and amplified inertia. Reactivity measures a population’s growth in a single measured timestep relative to the stable-stage growth, during the simulated transition period. Maximum amplification and amplified inertia are the maximum of future population density and the maximum long-term population density, respectively, relative to a stable-stage population that began at the same initial density (Stott et al. 2011). For these analyses, we used a mean matrix for Core 1, Core 2 Core 3, and Core 4 sites and the population structure of their last census. For the Peripheral site, we averaged the last three matrices post-hurricane disturbance and used the most-recent population structure. We standardized the indices across sites with the assumption of initial population density equal to 1 (Stott et al. 2011). Analysis was done using R Popdemo version 1.3-0 (Stott et al. 2012b). Stochastic simulation We created matrices to simulate the effects of episodic recruitment, hurricane impacts, herbivory, and logging (Appendix S1: Table S2). The Peripheral population is the longest-running site with nine years of censuses (eight

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
P.C. Lai (2023). RESEARCH METHODOLOGY FOR NOVELTY TECHNOLOGY [Dataset]. http://doi.org/10.6084/m9.figshare.7482734.v1

Data from: RESEARCH METHODOLOGY FOR NOVELTY TECHNOLOGY

Related Article
Explore at:
jpegAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
SciELO journals
Authors
P.C. Lai
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Abstract This paper contributes to the existing literature by reviewing the research methodology and the literature review with the focus on potential applications for the novelty technology of the single platform E-payment. These included, but were not restricted to the subjects, population, sample size requirement, data collection method and measurement of variables, pilot study and statistical techniques for data analysis. The reviews will shed some light and potential applications for future researchers, students and others to conceptualize, operationalize and analyze the underlying research methodology to assist in the development of their research methodology.

Search
Clear search
Close search
Google apps
Main menu