ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The areas in km2 and populations of the Portuguese and Spanish NUTS3 subregions. Data compiled from wikipedia articles.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The European Copernicus Coastal Flood Awareness System (ECFAS) project aimed at contributing to the evolution of the Copernicus Emergency Management Service (https://emergency.copernicus.eu/) by demonstrating the technical and operational feasibility of a European Coastal Flood Awareness System. Specifically, ECFAS provides a much-needed solution to bolster coastal resilience to climate risk and reduce population and infrastructure exposure by monitoring and supporting disaster preparedness, two factors that are fundamental to damage prevention and recovery if a storm hits.
The ECFAS Proof-of-Concept development ran from January 2021 to December 2022. The ECFAS project was a collaboration between Scuola Universitaria Superiore IUSS di Pavia (Italy, ECFAS Coordinator), Mercator Ocean International (France), Planetek Hellas (Greece), Collecte Localisation Satellites (France), Consorzio Futuro in Ricerca (Italy), Universitat Politecnica de Valencia (Spain), University of the Aegean (Greece), and EurOcean (Portugal), and was funded by the European Commission H2020 Framework Programme within the call LC-SPACE-18-EO-2020 - Copernicus evolution: research activities in support of the evolution of the Copernicus services.
Description of the containing files inside the Dataset.
The ECFAS Coastal Dataset represents a single access point to publicly available Pan-European datasets that provide key information for studying coastal areas. The publicly available datasets listed below have been clipped to the coastal area extent, quality-checked and assessed for completeness and usability in terms of coverage, accuracy, specifications and access. The dataset was divided at European country level, except for the Adriatic area which was extracted as a region and not at the country level due to the small size of the countries. The buffer zone of each data was 10km inland in order to be correlated with the new Copernicus product Coastal Zone LU/LC.
Specifically, the dataset includes the new Coastal LU/LC product which was implemented by the EEA and became available at the end of 2020. Additional information collected in relation to the location and characteristics of transport (road and railway) and utility networks (power plants), population density and time variability. Furthermore, some of the publicly available datasets that were used in CEMS related to the above mentioned assets were gathered such as OpenStreetMap (building footprints, road and railway network infrastructures), GeoNames (populated places but also names of administrative units, rivers and lakes, forests, hills and mountains, parks and recreational areas, etc.), the Global Human Settlement Layer (GHS) and Global Human Settlement Population Grid (GHS-POP) generated by JRC. Also, the dataset contains 2 layers with statistics information regarding the population of Europe per sex and age divided in administrative units at NUTS level 3. The first layer includes information for the whole of Europe and the second layer has only the information regarding the population at the Coastal area. Finally, the dataset includes the global database of Floods protection standards. Below there are tables which present the dataset.
* Adriatic folder contains the countries: Slovenia, Croatia, Montenegro, Albania, Bosnia and Herzegovina
* Malta was added to the dataset
Copernicus Land Monitoring Service:
Coastal LU/LC
Scale 1:10.000; A Copernicus hotspot product to monitor landscape dynamics in coastal zones
EU-Hydro - Coastline
Scale 1:30.000; EU-Hydro is a dataset for all European countries providing the coastline
Natura 2000
Scale 1: 100000; A Copernicus hotspot product to monitor important areas for nature conservation
European Settlement Map
Resolution 10m; A spatial raster dataset that is mapping human settlements in Europe
Imperviousness Density
Resolution 10m; The percentage of sealed area
Impervious Built-up
Resolution 10m; The part of the sealed surfaces where buildings can be found
Grassland 2018
Resolution 10m; A binary grassland/non-grassland product
Tree Cover Density 2018
Resolution 10m; Level of tree cover density in a range from 0-100%
Joint Research Center:
Global Human Settlement Population Grid
GHS-POP)
Resolution 250m; Residential population estimates for target year 2015
GHS settlement model layer
(GHS-SMOD)
Resolution 1km: The GHS Settlement Model grid delineates and classify settlement typologies via a logic of population size, population and built-up area densities
GHS-BUILT
Resolution 10m; Built-up grid derived from Sentinel-2 global image composite for reference year 2018
ENACT 2011 Population Grid
(ENACT-POP R2020A)
Resolution 1km; The ENACT is a population density for the European Union that take into account major daily and monthly population variations
JRC Open Power Plants Database (JRC-PPDB-OPEN)
Europe's open power plant database
GHS functional urban areas
(GHS-FUA R2019A)
Resolution 1km; City and its commuting zone (area of influence of the city in terms of labour market flows)
GHS Urban Centre Database
(GHS-UCDB R2019A)
Resolution 1km; Urban Centres defined by specific cut-off values on resident population and built-up surface
Additional Data:
Open Street Map (OSM)
BF, Transportation Network, Utilities Network, Places of Interest
CEMS
Data from Rapid Mapping activations in Europe
GeoNames
Populated places, Adm. units, Hydrography, Forests, Hills/Mountains, Parks, etc.
Global Administrative Areas
Administrative areas of all countries, at all levels of sub-division
NUTS3 Population Age/Sex Group
Eurostat population by age and sex statistics interescted with the NUTS3 Units
FLOPROS
A global database of FLOod PROtection Standards, which comprises information in the form of the flood return period associated with protection measures, at different spatial scales
Disclaimer:
ECFAS partners provide the data "as is" and "as available" without warranty of any kind. The ECFAS partners shall not be held liable resulting from the use of the information and data provided.
This project has received funding from the Horizon 2020 research and innovation programme under grant agreement No. 101004211
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset of concentrations of bisphenol A, F and S sulfates in wastewater from Spain and Portugal and back-calculation of human exposure by wastewater-based epidemiology.
Data is provided in MS Excel (xlsx) and CSV formats and contains details on WWTP characteristics, concentrations of bisphenols sulfates and extrapolated population-normalizad daily loads and different extrapolations of human exposure to bisphenols.
Further details are provided in the associated publication:
A. Estévez-Danta, R. Montes, A. Prieto, M.M. Santos, G. Orive, U. Lertxundi, J.B. Quintana, R. Rodil. Wastewater-Based Epidemiology Methodology To Investigate Human Exposure To Bisphenol A, Bisphenol F and Bisphenol S.
Water Research 2024, 122016. DOI: 10.1016/j.watres.2024.122016.
https://doi.org/10.1016/j.watres.2024.122016
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set contains estimates of the base rates of 550 food safety-relevant food handling practices in European households. The data are representative for the population of private households in the ten European countries in which the SafeConsume Household Survey was conducted (Denmark, France, Germany, Greece, Hungary, Norway, Portugal, Romania, Spain, UK).
Sampling design
In each of the ten EU and EEA countries where the survey was conducted (Denmark, France, Germany, Greece, Hungary, Norway, Portugal, Romania, Spain, UK), the population under study was defined as the private households in the country. Sampling was based on a stratified random design, with the NUTS2 statistical regions of Europe and the education level of the target respondent as stratum variables. The target sample size was 1000 households per country, with selection probability within each country proportional to stratum size.
Fieldwork
The fieldwork was conducted between December 2018 and April 2019 in ten EU and EEA countries (Denmark, France, Germany, Greece, Hungary, Norway, Portugal, Romania, Spain, United Kingdom). The target respondent in each household was the person with main or shared responsibility for food shopping in the household. The fieldwork was sub-contracted to a professional research provider (Dynata, formerly Research Now SSI). Complete responses were obtained from altogether 9996 households.
Weights
In addition to the SafeConsume Household Survey data, population data from Eurostat (2019) were used to calculate weights. These were calculated with NUTS2 region as the stratification variable and assigned an influence to each observation in each stratum that was proportional to how many households in the population stratum a household in the sample stratum represented. The weights were used in the estimation of all base rates included in the data set.
Transformations
All survey variables were normalised to the [0,1] range before the analysis. Responses to food frequency questions were transformed into the proportion of all meals consumed during a year where the meal contained the respective food item. Responses to questions with 11-point Juster probability scales as the response format were transformed into numerical probabilities. Responses to questions with time (hours, days, weeks) or temperature (C) as response formats were discretised using supervised binning. The thresholds best separating between the bins were chosen on the basis of five-fold cross-validated decision trees. The binned versions of these variables, and all other input variables with multiple categorical response options (either with a check-all-that-apply or forced-choice response format) were transformed into sets of binary features, with a value 1 assigned if the respective response option had been checked, 0 otherwise.
Treatment of missing values
In many cases, a missing value on a feature logically implies that the respective data point should have a value of zero. If, for example, a participant in the SafeConsume Household Survey had indicated that a particular food was not consumed in their household, the participant was not presented with any other questions related to that food, which automatically results in missing values on all features representing the responses to the skipped questions. However, zero consumption would also imply a zero probability that the respective food is consumed undercooked. In such cases, missing values were replaced with a value of 0.
Most population genomics R packages can open vcf format files.
Text editor or vcftools.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study explores the causal relationship between the economy and the elderly population in 15 European countries. The economy was measured by the Per Capita Gross Domestic Product growth rate, while the population aged above 65 as a percentage of the total was considered the elderly population. The data were obtained from a time series dataset published by the World Bank for six decades from 1961 to 2021. The Granger causality test was employed in the study to analyse the impact between the economy and the elderly population. An alternate approach, wavelet coherence, was used to demonstrate the changes to the relationship between the two variables in Europe over the 60 years. The findings from the Granger causality test indicate a unidirectional Granger causality from the economy to the elderly population for Luxembourg, Austria, Denmark, Spain, and Sweden, while vice versa for Greece and the United Kingdom. Furthermore, for Belgium, Finland, France, Italy, Netherlands, Norway, Portugal, and Turkey, Granger causality does not exist between the said variables. Moreover, wavelet coherence analysis depicts that for Europe, the elderly population negatively affected the economic growth in the 1960s, and vice versa in the 1980s.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The areas in km2 and populations of the Portuguese and Spanish NUTS3 subregions. Data compiled from wikipedia articles.