Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Bellringer activities designed to support Advanced Placement Human Geography.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Bell Ringer activities designed to support Advanced Placement Human Geography.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Anticipating critical transitions in spatially extended systems is a key topic of interest to ecologists. Gradually declining metapopulations are an important example of a spatially extended biological system that may exhibit a critical transition. Theory for spatially extended systems approaching extinction that accounts for environmental stochasticity and coupling is currently lacking. Here, we develop spatially implicit two-patch models with additive and multiplicative forms of environmental stochasticity that are slowly forced through population collapse, through changing environmental conditions. We derive patch-specific expressions for candidate indicators of extinction and test their performance via a simulation study. Coupling and spatial heterogeneities decrease the magnitude of the proposed indicators in coupled populations relative to isolated populations, and the noise regime and the degree of coupling together determine trends in summary statistics. This theory may be readily applied to other spatially extended ecological systems, such as coupled infectious disease systems on the verge of elimination.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Grandmothers provide key care to their grandchildren in both contemporary and historic human populations. The length of the grandmother-grandchild relationship provides a basis for such interactions, but its variation and determinants have rarely been studied in different contexts, despite changes in age-specific mortality and fertility rates likely having affected grandmotherhood patterns across the demographic transition. Understanding how often and long grandmothers have been available for their grandchildren in different conditions may help explain the large differences between grandmaternal effects found in different societies, and is vital for developing theories concerning the evolution of menopause, post-reproductive longevity, and family living. Using an extensive genealogical dataset from Finland spanning the demographic transition, we quantify the length of grandmotherhood and its determinants from 1790–1959. We found that shared time between grandmothers and grandchildren was consistently low before the demographic transition, only increasing greatly during the 20th century. Whilst reduced childhood mortality and increasing adult longevity had a role in this change, grandmaternal age at birth remained consistent across the study period. Our findings further understanding of the temporal context of grandmother-grandchild relationships, and emphasise the need to consider the demography of grandmotherhood in a number of disciplines, including biology (e.g. evolution of the family), sociology (e.g. changing family structures), population health (e.g. changing age structures), and economics (e.g. workforce retention).
The authors propose a unified growth theory to explain demographic empirical regularities. They calibrate the model to match data moments for Sweden in 2000 and around 1800. The simulated data generated by the calibrated model are then compared to the historical time series for Sweden over the period 1750-2000 in order to investigate the fit of long-term development dynamics, as well as to cross-country panel data for the period 1960-2000 to analyze the relevance for cross-sectional patterns of comparative development. For the calibration, data was used from the OECD webpage, ERS Dataset, historical statistics from the Bank of Sweden, micro data from the ECHP dataset, Data from the Human Mortality Data Base, UN Population Statistics, or data from existing papers. For the time-series and cross section analysis, data was taken from the Human Mortality Database, World Development Indicators, Swedish Central Statistical Office, UN Population Statistics and existing literature.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Appendix for Deborah J. Brooks et al., "The Demographic Transition Theory of War: Why Young Societies are Conflict Prone and Old Societies Are the Most Peaceful," International Security, Vol. 43, No. 3 (Winter 2018/19), pp. 53-95, doi.org/10.1162/isec_a_00335.
As thermal regimes change worldwide, projections of future population and species persistence often require estimates of how population growth rates depend on temperature. These projections rarely account for how temporal variation in temperature can systematically modify growth rates relative to projections based on constant temperatures. Here,we tested the hypothesis that time-averaged population growth rates in fluctuating thermal environments differ from growth rates in constant conditions as a consequence of Jensen’s inequality, and that the thermal performance curves (TPCs) describing population growth in fluctuating environments can be predicted quantitatively based on TPCs generated in constant lab conditions. With experimental populations of the green alga Tetraselmis tetrahele, we show that nonlinear averaging techniques accurately predicted increased as well as decreased population growth rates influctuating thermal regimes relative to constant thermal regimes. We extrapolate...
Some neo-Malthusians regard fertility as being kept in check by scarcities and constraints and, conversely, as being raised by economic prosperity. Since out-migration to developed countries and the receipt of food aid from developed countries relax the constraints imposed by a country’s carrying capacity, both will have a positive effect on fertility rates in developing countries. Moreover, better economic prospects will also raise fertility, all other things equal. This article provides an empirical test of these hypotheses derived from a neo-Malthusian theory of fertility change. The results fail to confirm the theory and often contradict it.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data belong to a paper that empirically examines the correlation between population growth and real interest rates. Although this correlation is well founded in macroeconomic theory, the corresponding empirical results have been rather tenuous. Demographic interest rate theories are typically based on long-term relationships across generations. Accordingly, key population trends appear often only across decades, if not centuries, worth of data. To capture these trends, a distinction is made between population growth resulting from a birth surplus and net migration. Within a panel covering 12 countries and the years since 1820, the paper find robust evidence that the birth surplus is significantly correlated with the real interest rate.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Theory suggests that the drivers of demographic variation and local adaptation are shared and may feedback on one other. Despite some evidence for these links in controlled settings, the relationship between local adaptation and demography remains largely unexplored in natural conditions. Using 10 years of demographic data and two reciprocal transplant experiments, we tested predictions about the relationship between the magnitude of local adaptation and demographic variation (population growth rates and their elasticities to vital rates) across 10 populations of a well-studied annual plant. In both years, we found a strong unimodal relationship between mean home-away local adaptation and stochastic population growth rates. Other predicted links were either weakly or not supported by our data. Our results suggest that declining and rapidly growing populations exhibit reduced local adaptation, potentially due to maladaptation and relaxed selection, respectively.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Understanding the influence of environmental variability on population dynamics is a fundamental goal of ecology. Theory suggests that, for populations in variable environments, temporal correlations between demographic vital rates (e.g., growth, survival, reproduction) can increase (if positive) or decrease (if negative) the variability of year-to-year population growth. Because this variability generally decreases long-term population viability, vital rate correlations may importantly affect population dynamics in stochastic environments. Despite long-standing theoretical interest, it is unclear whether vital rate correlations are common in nature, whether their directions are predominantly negative or positive, and whether they are of sufficient magnitude to warrant broad consideration in studies of stochastic population dynamics. We used long-term demographic data for three perennial plant species, hierarchical Bayesian parameterization of population projection models, and stochastic simulations to address the following questions: (1) What are the sign, magnitude, and uncertainty of temporal correlations between vital rates? (2) How do specific pairwise correlations affect the year-to-year variability of population growth? (3) Does the net effect of all vital rate correlations increase or decrease year-to-year variability? (4) What is the net effect of vital rate correlations on the long-term stochastic population growth rate (λS)? We found only four moderate to strong correlations, both positive and negative in sign, across all species and vital rate pairs; otherwise, correlations were generally weak in magnitude and variable in sign. The net effect of vital rate correlations ranged from a slight decrease to an increase in the year-to-year variability of population growth, with average changes in variance ranging from -1% to +22%. However, vital rate correlations caused virtually no change in the estimates of λS (mean effects ranging from -0.01% to +0.17%). Therefore, the proportional changes in the variance of population growth caused by demographic correlations were too small on an absolute scale to importantly affect population growth and viability. We conclude that in our three focal populations and perhaps more generally, vital rate correlations have little effect on stochastic population dynamics. This may be good news for population ecologists, because estimating vital rate correlations and incorporating them into population models can be data-intensive and technically challenging.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Major insights into the relationship between life-history features and fitness have come from Lotka's proof that population growth rate is determined by the level (expected amount) of reproduction and the average timing of reproduction of an individual. But this classical result is limited to age-structured populations. Here we generalize this result to populations structured by stage and age by providing a new, unique measure of reproductive timing (Tc) that, along with net reproductive rate (R0), has a direct mathematical relationship to and approximates growth rate (r). We use simple examples to show how reproductive timing Tc and level R0 are shaped by stage dynamics (individual trait changes), selection on the trait, and parent-offspring phenotypic correlation. We also show how population structure can affect dispersion in reproduction among ages and stages. These macroscopic features of the life history determine population growth rate r and reveal a complex interplay of trait dynamics, timing, and level of reproduction. Our results contribute to a new framework of population and evolutionary dynamics in stage-and-age-structured populations.
Not many studies have documented climate and air quality changes of settlements at early stages of development. This is because high quality climate and air quality records are deficient for the periods of the early 18th century to mid 20th century when many U.S. cities were formed and grew. Dramatic landscape change induces substantial local climate change during the incipient stage of development. Rapid growth along the urban fringe in Phoenix, coupled with a fine-grained climate monitoring system, provide a unique opportunity to study the climate impacts of urban development as it unfolds. Generally, heat islands form, particularly at night, in proportion to city population size and morphological characteristics. Drier air is produced by replacement of the countryside's moist landscapes with dry, hot urbanized surfaces. Wind is increased due to turbulence induced by the built-up urban fabric and its morphology; although, depending on spatial densities of buildings on the land, wind may also decrease. Air quality conditions are worsened due to increased city emissions and surface disturbances. Depending on the diversity of microclimates in pre-existing rural landscapes and the land-use mosaic in cities, the introduction of settlements over time and space can increase or decrease the variety of microclimates within and near urban regions. These differences in microclimatic conditions can influence variations in health, ecological, architectural, economic, energy and water resources, and quality-of-life conditions in the city. Therefore, studying microclimatic conditions which change in the urban fringe over time and space is at the core of urban ecological goals as part of LTER aims. In analyzing Phoenix and Baltimore long-term rural/urban weather and climate stations, Brazel et al. (In progress) have discovered that long-term (i.e., 100 years) temperature changes do not correlate with populations changes in a linear manner, but rather in a third-order nonlinear response fashion. This nonlinear temporal change is consistent with the theories in boundary layer climatology that describe and explain the leading edge transition and energy balance theory. This pattern of urban vs. rural temperature response has been demonstrated in relation to spatial range of city sizes (using population data) for 305 rural vs. urban climate stations in the U.S. Our recent work on the two urban LTER sites has shown that a similar climate response pattern also occurs over time for climate stations that were initially located in rural locations have been overrun bu the urban fringe and subsequent urbanization (e.g., stations in Baltimore, Mesa, Phoenix, and Tempe). Lack of substantial numbers of weather and climate stations in cities has previously precluded small-scale analyses of geographic variations of urban climate, and the links to land-use change processes. With the advent of automated weather and climate station networks, remote-sensing technology, land-use history, and the focus on urban ecology, researchers can now analyze local climate responses as a function of the details of land-use change. Therefore, the basic research question of this study is: How does urban climate change over time and space at the place of maximum disturbance on the urban fringe? Hypotheses 1. Based on the leading edge theory of boundary layer climate change, largest changes should occur during the period of peak development of the land when land is being rapidly transformed from open desert and agriculture to residential, commercial, and industrial uses. 2. One would expect to observe, on average and on a temporal basis (several years), nonlinear temperature and humidity alterations across the station network at varying levels of urban development. 3. Based on past research on urban climate, one would expect to see in areas of the urban fringe, rapid changes in temperature (increases at night particularly), humidity (decreases in areas from agriculture to urban; increases from desert to urban), and wind speed (increases due to urban heating). 4. Changes of the surface climate on the urban fringe are expected to be altered as a function of various energy, moisture, and momentum control parameters, such as albedo, surface moisture, aerodynamic surface roughness, and thermal admittance. These parameters relate directly to population and land-use change (Lougeay et al. 1996).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Downscaled climate projections need to be linked to downscaled projections of population and economic growth to fully develop implications for land, natural resources, and ecosystems for future scenarios. We develop an empirical spatiotemporal approach for jointly projecting population and income at the county scale in the United States that is consistent with neoclassical economic growth theory and overlapping labor markets and that accounts for labor migration and spatial spillovers. Downscaled projections generated for the five Shared Socioeconomic Pathways used to support global scenario analysis generally show growth focused around relatively few centers especially in the southeast and western regions, with some areas in the Midwest and northeast experiencing population declines. Results are consistent with economic growth theory and with historical trends in population change and convergence of per capita personal income across US counties.
Theoretical and empirical research has shown that increased variability in demographic rates often results in a decline in the population growth rate. In order to reduce the adverse effects of increased variability, life-history theory predicts that demographic rates that contribute disproportionately to population growth should be buffered against environmental variation. To date, evidence of demographic buffering is still equivocal and limited to analyses on a reduced number of age-classes (e.g. juveniles and adults), and on single sex models. Here we used Bayesian inference models for age-specific survival and fecundity on a long-term dataset of wild mountain gorillas. We used these estimates to parameterize two-sex, age-specific stochastic population projection models that accounted for the yearly covariation between demographic rates. We estimated the sensitivity of the long-run stochastic population growth rate to reductions in survival and fecundity on ages belonging to nine...
Individual metabolism generally scales with body mass with an exponent around 3/4. From dimensional arguments it follows that maximum population growth rate (rmax) scales with a -1/4 exponent. However, the dimensional argument implicitly assumes that offspring size is proportional to adult size. Here we calculate rmax from metabolic scaling at the level of individuals within size-structured populations while explicitly accounting for offspring size. We identify four general patterns of how rmax scales with adult mass based on four empirical life-history patterns employed by groups of species. These life-history patterns are determined by how traits of somatic growth rate and/or offspring mass relate to adult mass. One life-history pattern -- constant adult:offspring mass ratio and somatic growth rate independent of adult mass -- leads to the classic -1/4 scaling of rmax. The other three life-history patterns lead either to non-metabolic population growth scaling with adult mass or do no...
The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.
The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.
National
The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.
Sample survey data
SAMPLE SIZE AND ALLOCATION
The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).
THE FRAME AND SAMPLE SELECTION
The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.
SAMPLE OUTCOME
The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.
Face-to-face
The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.
a) Household questionnaire
The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.
Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.
b) Individual questionnaire
The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers
The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Speed of life and reproductive strategy form the two major axes that organize variation in life history strategies across plant and animal species. The position of a species along these axes can inform on their sensitivity to environmental change. This provides a tantalizing link between sets of traits and population responses to change, contained in a highly generalizable theoretical framework. The underlying mechanisms are assumed to be governed by life history tradeoffs at the individual level. Examples include the tradeoff between current and future reproductive success, and investing energy into growth versus reproduction. But the importance of such tradeoffs in structuring population-level responses to environmental change remains understudied. We aim to increase our understanding of the link between individual-level life history tradeoffs and the structuring of life history strategies across species, and if they link to population responses to environmental change. We find that the classical association between life history strategies and population responses to environmental change breaks down when accounting for individual-level tradeoffs and reproductive decisions. Projecting population responses to environmental change can therefore not always be inferred based on a limited set of species traits alone. We summarize our perspective and a way forward in a conceptual framework.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Survivorship model comparison.
LifeTablesLife tables for 24 species of terrestrial vertebrates.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Bellringer activities designed to support Advanced Placement Human Geography.