100+ datasets found
  1. d

    MeSH Population Groups (Type 5 SCR)

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Library of Medicine (2025). MeSH Population Groups (Type 5 SCR) [Dataset]. https://catalog.data.gov/dataset/mesh-population-groups-type-5-scr
    Explore at:
    Dataset updated
    Jun 19, 2025
    Dataset provided by
    National Library of Medicine
    Description

    Working with partners across NIH, led by NIMHD and the NLM OBSSR-Behavioral Ontology Working Group, MeSH on November 29, 2022 added Federally recognized American Indian and Alaskan Native (AI/AN) tribal names and ethnic/ethnolinguistic minority terms as newly created type 5 SCR designated as “Population Groups”. These minority names (1,700+ terms) were mapped and reviewed by subject matter experts and scientists within NIH and from outside including Network of the National Library of Medicine members. Structure: All type 5 SCRs have common fields 1. CC=5 Population Group 2. ST=T098 Population Groups 3. HM= At least one HM is to an MH under Population Groups [M01.686] 4. TH= NIMHD(2023)

  2. Distribution of population in the U.S. 2023, by type of housing

    • statista.com
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Distribution of population in the U.S. 2023, by type of housing [Dataset]. https://www.statista.com/statistics/1498066/distribution-of-population-us-by-type-of-housing/
    Explore at:
    Dataset updated
    Oct 23, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, most people in the United States lived in detached or attached single-family housing. Over 62 percent of people lived in a single-family home that they owned, with a further 12 percent living in a house that they were renting. Nevertheless, most of the people living in a rented housing unit lived in multi-family housing.

  3. e

    Data from: The Global Population Dynamics Database

    • knb.ecoinformatics.org
    Updated May 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Prendergast; Ellen Bazeley-White; Owen Smith; John Lawton; Pablo Inchausti; David Kidd; Sarah Knight (2020). The Global Population Dynamics Database [Dataset]. http://doi.org/10.5063/F1BZ63Z8
    Explore at:
    Dataset updated
    May 18, 2020
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    John Prendergast; Ellen Bazeley-White; Owen Smith; John Lawton; Pablo Inchausti; David Kidd; Sarah Knight
    Time period covered
    Jan 1, 1538 - Jan 1, 2003
    Area covered
    Earth
    Variables measured
    End, Area, East, EorW, NorS, West, Year, Begin, LatDD, North, and 71 more
    Description

    As a source of animal and plant population data, the Global Population Dynamics Database (GPDD) is unrivalled. Nearly five thousand separate time series are available here. In addition to all the population counts, there are taxonomic details of over 1400 species. The type of data contained in the GPDD varies enormously, from annual counts of mammals or birds at individual sampling sites, to weekly counts of zooplankton and other marine fauna. The project commenced in October 1994, following discussions on ways in which the collaborating partners could make a practical and enduring contribution to research into population dynamics. A small team was assembled and, with assistance and advice from numerous interested parties we decided to construct the database using the popular Microsoft Access platform. After an initial design phase, the major task has been that of locating, extracting, entering and validating the data in all the various tables. Now, nearly 5000 individual datasets have been entered onto the GPDD. The Global Population Dynamics Database comprises six Tables of data and information. The tables are linked to each other as shown in the diagram shown in figure 3 of the GPDD User Guide (GPDD-User-Guide.pdf). Referential integrity is maintained through record ID numbers which are held, along with other information in the Main Table. It's structure obeys all the rules of a standard relational database.

  4. d

    Household Types and Populations - Seattle Neighborhoods

    • catalog.data.gov
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Household Types and Populations - Seattle Neighborhoods [Dataset]. https://catalog.data.gov/dataset/household-types-and-populations-seattle-neighborhoods
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on household types and population related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B11003 Family Type by Presence and Age of Own Children under 18 Years, B11005 Households by Presence of People Under 18 Years by Household Type, B11007 Households by Presence of People 65 Years and Over by Household Type, B11001 Household Type (Including Living Alone), B11002 Household Type by Relatives and Nonrelatives for Population in Households, B25003 Tenure, B25008 Total Population in Occupied Housing Units by Tenure, B09019 Household Type (Including Living Alone) by Relationship. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B11003, B11005, B11007, B11001, B11002, B25003, B25008, B09019Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):<a href='https://www.census.gov/programs-surveys/acs/about.html' style='color:rgb(0, 121, 193); text-decoration-line:none; font-family:inherit;' target='_blank' rel=

  5. T

    Spain - Distribution of population by household types: Single person

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Sep 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Spain - Distribution of population by household types: Single person [Dataset]. https://tradingeconomics.com/spain/distribution-of-population-by-household-types-single-person-eurostat-data.html
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Sep 16, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Spain
    Description

    Spain - Distribution of population by household types: Single person was 11.30% in December of 2024, according to the EUROSTAT. Trading Economics provides the current actual value, an historical data chart and related indicators for Spain - Distribution of population by household types: Single person - last updated from the EUROSTAT on June of 2025. Historically, Spain - Distribution of population by household types: Single person reached a record high of 11.30% in December of 2024 and a record low of 8.40% in December of 2009.

  6. D

    Household Types and Populations - Seattle Neighborhoods

    • data.seattle.gov
    • data-seattlecitygis.opendata.arcgis.com
    • +1more
    application/rdfxml +5
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Household Types and Populations - Seattle Neighborhoods [Dataset]. https://data.seattle.gov/dataset/Household-Types-and-Populations-Seattle-Neighborho/8nez-wmwv
    Explore at:
    xml, csv, tsv, json, application/rssxml, application/rdfxmlAvailable download formats
    Dataset updated
    Oct 22, 2024
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on household types and population related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B11003 Family Type by Presence and Age of Own Children under 18 Years, B11005 Households by Presence of People Under 18 Years by Household Type, B11007 Households by Presence of People 65 Years and Over by Household Type, B11001 Household Type (Including Living Alone), B11002 Household Type by Relatives and Nonrelatives for Population in Households, B25003 Tenure, B25008 Total Population in Occupied Housing Units by Tenure, B09019 Household Type (Including Living Alone) by Relationship. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.


    Table created for and used in the Neighborhood Profiles application.

    Vintages: 2023


    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb(year)a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k <a href='https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html' style='color:rgb(0, 121, 193); text-decoration-line:none; font-family:inherit; margin:0px;

  7. o

    Population by region, sex and type of locality, Total Country (2010) -...

    • open.africa
    Updated May 15, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). Population by region, sex and type of locality, Total Country (2010) - Dataset - openAFRICA [Dataset]. https://open.africa/dataset/population-by-region-sex-and-type-of-locality-total-country-2010
    Explore at:
    Dataset updated
    May 15, 2013
    Description

    Population by region, sex and type of locality, Total Country (2010)

  8. Distribution of blood types in the U.S. as of 2023

    • statista.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of blood types in the U.S. as of 2023 [Dataset]. https://www.statista.com/statistics/1112664/blood-type-distribution-us/
    Explore at:
    Dataset updated
    Mar 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The eight main blood types are A+, A-, B+, B-, O+, O-, AB+, and AB-. The most common blood type in the United States is O-positive, with around 38 percent of the population having this type of blood. However, blood type O-positive is more common in Latino-Americans than other ethnicities, with around 53 percent of Latino-Americans with this blood type, compared to 47 percent of African Americans and 37 percent of Caucasians. Blood donation The American Red Cross estimates that every two seconds someone in the United States needs blood or platelets, highlighting the importance of blood donation. It was estimated that in 2021, around 6.5 million people in the U.S. donated blood, with around 1.7 million of these people donating for the first time. Those with blood type O-negative are universal blood donors, meaning their blood can be transfused for any blood type. Therefore, this blood type is the most requested by hospitals. However, only about seven percent of the U.S. population has this blood type. Blood transfusion Blood transfusion is a routine procedure that involves adding donated blood to a patient’s body. There are many reasons why a patient may need a blood transfusion, including surgery, cancer treatment, severe injury, or chronic illness. In 2021, there were around 10.76 million blood transfusions in the United States. Most blood transfusions in the United States occur in an inpatient medicine setting, while critical care accounts for the second highest number of transfusions.

  9. i

    Population and Family Health Survey 2002 - Jordan

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DOS) (2019). Population and Family Health Survey 2002 - Jordan [Dataset]. http://catalog.ihsn.org/catalog/183
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics (DOS)
    Time period covered
    2002
    Area covered
    Jordan
    Description

    Abstract

    The JPFHS is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health. The primary objective of the Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, fertility preferences, as well as maternal and child health and nutrition that can be used by program managers and policy makers to evaluate and improve existing programs. In addition, the JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional or crossnational studies.

    The content of the 2002 JPFHS was significantly expanded from the 1997 survey to include additional questions on women’s status, reproductive health, and family planning. In addition, all women age 15-49 and children less than five years of age were tested for anemia.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: See detailed description of sample design in APPENDIX B of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    The 2002 JPFHS used two questionnaires – namely, the Household Questionnaire and the Individual Questionnaire. Both questionnaires were developed in English and translated into Arabic. The Household Questionnaire was used to list all usual members of the sampled households and to obtain information on each member’s age, sex, educational attainment, relationship to the head of household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. The Household Questionnaire was also used to identify women who are eligible for the individual interview: ever-married women age 15-49. In addition, all women age 15-49 and children under five years living in the household were measured to determine nutritional status and tested for anemia.

    The household and women’s questionnaires were based on the DHS Model “A” Questionnaire, which is designed for use in countries with high contraceptive prevalence. Additions and modifications to the model questionnaire were made in order to provide detailed information specific to Jordan, using experience gained from the 1990 and 1997 Jordan Population and Family Health Surveys. For each evermarried woman age 15 to 49, information on the following topics was collected:

    1. Respondent’s background
    2. Birth history
    3. Knowledge and practice of family planning
    4. Maternal care, breastfeeding, immunization, and health of children under five years of age
    5. Marriage
    6. Fertility preferences
    7. Husband’s background and respondent’s employment
    8. Knowledge of AIDS and STIs

    In addition, information on births and pregnancies, contraceptive use and discontinuation, and marriage during the five years prior to the survey was collected using a monthly calendar.

    Cleaning operations

    Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding of the open-ended questions.

    Data entry and verification started after one week of office data processing. The process of data entry, including one hundred percent re-entry, editing and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by the end of October 2002. A data processing specialist from ORC Macro made a trip to Jordan in October and November 2002 to follow up data editing and cleaning and to work on the tabulation of results for the survey preliminary report. The tabulations for the present final report were completed in December 2002.

    Response rate

    A total of 7,968 households were selected for the survey from the sampling frame; among those selected households, 7,907 households were found. Of those households, 7,825 (99 percent) were successfully interviewed. In those households, 6,151 eligible women were identified, and complete interviews were obtained with 6,006 of them (98 percent of all eligible women). The overall response rate was 97 percent.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: See detailed

  10. f

    Taxonomic and Geographic Bias in Conservation Biology Research: A Systematic...

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Beth E. I. Roberts; W. Edwin Harris; Geoff M. Hilton; Stuart J. Marsden (2023). Taxonomic and Geographic Bias in Conservation Biology Research: A Systematic Review of Wildfowl Demography Studies [Dataset]. http://doi.org/10.1371/journal.pone.0153908
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Beth E. I. Roberts; W. Edwin Harris; Geoff M. Hilton; Stuart J. Marsden
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Demographic data are important to wildlife managers to gauge population health, to allow populations to be utilised sustainably, and to inform conservation efforts. We analysed published demographic data on the world’s wildfowl to examine taxonomic and geographic biases in study, and to identify gaps in knowledge. Wildfowl (order: Anseriformes) are a comparatively well studied bird group which includes 169 species of duck, goose and swan. In all, 1,586 wildfowl research papers published between 1911 and 2010 were found using Web of Knowledge (WoK) and Google Scholar. Over half of the research output involved just 15 species from seven genera. Research output was strongly biased towards ‘high income’ countries, common wildfowl species, and measures of productivity, rather than survival and movement patterns. There were significantly fewer demographic data for the world’s 31 threatened wildfowl species than for non-threatened species. Since 1994, the volume of demographic work on threatened species has increased more than for non-threatened species, but still makes up only 2.7% of total research output. As an aid to research prioritisation, a metric was created to reflect demographic knowledge gaps for each species related to research output for the species, its threat status, and availability of potentially useful surrogate data from congeneric species. According to the metric, the 25 highest priority species include thirteen threatened taxa and nine species each from Asia and South America, and six from Africa.

  11. 2021 American Community Survey: B28001 | TYPES OF COMPUTERS IN HOUSEHOLD...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2021 American Community Survey: B28001 | TYPES OF COMPUTERS IN HOUSEHOLD (ACS 5-Year Estimates Selected Population Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5YSPT2021.B28001?q=American%20Physical%20Svc
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "Has one or more types of computing devices" refers to those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer. The category "No computer" consists of those who said "No" to all of these types of computers..Desktop or laptop refers to those who selected that category regardless of whether or not they indicated they also had another type of computer. However, "Desktop or laptop with no other type of computing device" refers to those who said "Yes" to owning or using a desktop or laptop and "No" to smartphone, tablet or other wireless computer, and other computer. Similarly, the same holds true for "Smartphone" compared to "Smartphone with no other type of computing device", "Tablet or other portable wireless computer" compared to "Tablet or other portable wireless computer with no other type of computing device", and "Other computer" compared to "Other computer with no other type of computing device.".The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  12. d

    State wise fishermen population by type

    • dataful.in
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). State wise fishermen population by type [Dataset]. https://dataful.in/datasets/15248
    Explore at:
    csv, application/x-parquet, xlsxAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    States of India
    Variables measured
    number of fishermen
    Description

    This dataset includes the information on state wise population of fishermen. The information is categorised by Inland fishermen & Marine fishermen. Further, the fishermen categorisation is also on - full-time, part=time, occasional etc.

  13. Proportion of centres by Autonomous Community and type of population...

    • ine.es
    csv, html, json +4
    Updated Jul 12, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2007). Proportion of centres by Autonomous Community and type of population attended to [Dataset]. https://www.ine.es/jaxi/tabla.do?path=/t25/p454/e01/a2003/l1/&file=01005.px&type=pcaxis&L=1
    Explore at:
    html, csv, txt, xlsx, xls, text/pc-axis, jsonAvailable download formats
    Dataset updated
    Jul 12, 2007
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Variables measured
    Autonomous Community, Type of population attended to
    Description

    Survey on Support Centres for Homeless Persons: Proportion of centres by Autonomous Community and type of population attended to. Autonomous Community.

  14. T

    European Union - Distribution of population by household types: Single...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Oct 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). European Union - Distribution of population by household types: Single person [Dataset]. https://tradingeconomics.com/european-union/distribution-of-population-by-household-types-single-person-eurostat-data.html
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Oct 11, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    European Union
    Description

    European Union - Distribution of population by household types: Single person was 16.20% in December of 2024, according to the EUROSTAT. Trading Economics provides the current actual value, an historical data chart and related indicators for European Union - Distribution of population by household types: Single person - last updated from the EUROSTAT on July of 2025. Historically, European Union - Distribution of population by household types: Single person reached a record high of 16.20% in December of 2024 and a record low of 13.60% in December of 2010.

  15. Dependency rate of the population over 64 years of age per year

    • ine.es
    csv, html, json +4
    Updated Jun 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    INE - Instituto Nacional de Estadística (2024). Dependency rate of the population over 64 years of age per year [Dataset]. https://www.ine.es/jaxiT3/Tabla.htm?t=36756&L=1
    Explore at:
    text/pc-axis, csv, xlsx, json, html, txt, xlsAvailable download formats
    Dataset updated
    Jun 24, 2024
    Dataset provided by
    National Statistics Institutehttp://www.ine.es/
    Authors
    INE - Instituto Nacional de Estadística
    License

    https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal

    Time period covered
    Jan 1, 2024 - Jan 1, 2039
    Variables measured
    Provinces, Type of data, Demographic Concepts
    Description

    Population Projections: Dependency rate of the population over 64 years of age per year. Annual. Provinces.

  16. 2023 American Community Survey: B28001 | Types of Computers in Household...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B28001 | Types of Computers in Household (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2023.B28001?q=Com
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "Has one or more types of computing devices" refers to those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer. The category "No computer" consists of those who said "No" to all of these types of computers.."Desktop or laptop" refers to those who selected that category regardless of whether or not they indicated they also had another type of computer. However, "Desktop or laptop with no other type of computing device" refers to those who said "Yes" to owning or using a desktop or laptop and "No" to smartphone, tablet or other wireless computer, and other computer. Similarly, the same holds true for "Smartphone" compared to "Smartphone with no other type of computing device", "Tablet or other portable wireless computer" compared to "Tablet or other portable wireless computer with no other type of computing device", and "Other computer" compared to "Other computer with no other type of computing device.".Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient n...

  17. Population Distribution by Quarter Type in 2016

    • hub.arcgis.com
    • opendata.esrichina.hk
    Updated Jul 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2018). Population Distribution by Quarter Type in 2016 [Dataset]. https://hub.arcgis.com/maps/90d3bd700afc41809e1d3fa1250b1288
    Explore at:
    Dataset updated
    Jul 6, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Area covered
    Description

    This web map shows the Population distribution by quarter type in 2016 within the 18 districts of Hong Kong. It is a subset of the census data 2016 made available by the Census and Statistics Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://DATA.GOV.HK/ (“DATA.GOV.HK”). The source data is in XLSX format and has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of DATA.GOV.HK at https://data.gov.hk.

  18. f

    Data_Sheet_1_Integrating Multiple Data Types to Connect Ecological Theory...

    • frontiersin.figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jian D. L. Yen; Zeb Tonkin; Jarod Lyon; Wayne Koster; Adrian Kitchingman; Kasey Stamation; Peter A. Vesk (2023). Data_Sheet_1_Integrating Multiple Data Types to Connect Ecological Theory and Data Among Levels.pdf [Dataset]. http://doi.org/10.3389/fevo.2019.00095.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Frontiers
    Authors
    Jian D. L. Yen; Zeb Tonkin; Jarod Lyon; Wayne Koster; Adrian Kitchingman; Kasey Stamation; Peter A. Vesk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Ecological theories often encompass multiple levels of biological organization, such as genes, individuals, populations, and communities. Despite substantial progress toward ecological theory spanning multiple levels, ecological data rarely are connected in this way. This is unfortunate because different types of ecological data often emerge from the same underlying processes and, therefore, are naturally connected among levels. Here, we describe an approach to integrate data collected at multiple levels (e.g., individuals, populations) in a single statistical analysis. The resulting integrated models make full use of existing data and might strengthen links between statistical ecology and ecological models and theories that span multiple levels of organization. Integrated models are increasingly feasible due to recent advances in computational statistics, which allow fast calculations of multiple likelihoods that depend on complex mechanistic models. We discuss recently developed integrated models and outline a simple application using data on freshwater fishes in south-eastern Australia. Available data on freshwater fishes include population survey data, mark-recapture data, and individual growth trajectories. We use these data to estimate age-specific survival and reproduction from size-structured data, accounting for imperfect detection of individuals. Given that such parameter estimates would be infeasible without an integrated model, we argue that integrated models will strengthen ecological theory by connecting theoretical and mathematical models directly to empirical data. Although integrated models remain conceptually and computationally challenging, integrating ecological data among levels is likely to be an important step toward unifying ecology among levels.

  19. w

    Distribution of population per democracy type in Africa

    • workwithdata.com
    Updated May 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Distribution of population per democracy type in Africa [Dataset]. https://www.workwithdata.com/charts/countries?agg=sum&chart=bar&f=1&fcol0=continent&fop0=%3D&fval0=Africa&x=democracy_type&y=population
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This bar chart displays population (people) by democracy type using the aggregation sum in Africa. The data is about countries.

  20. Participation rate in education, population aged 15 to 29, by age and type...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Participation rate in education, population aged 15 to 29, by age and type of institution attended [Dataset]. http://doi.org/10.25318/3710010101-eng
    Explore at:
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Participation rate (percentage) in education, population aged 15 to 29, by age and type of institution attended, Canada. This table is included in Section E: Transitions and outcomes: Transitions to postsecondary education of the Pan Canadian Education Indicators Program (PCEIP). PCEIP draws from a wide variety of data sources to provide information on the school-age population, elementary, secondary and postsecondary education, transitions, and labour market outcomes. The program presents indicators for all of Canada, the provinces, the territories, as well as selected international comparisons and comparisons over time. PCEIP is an ongoing initiative of the Canadian Education Statistics Council, a partnership between Statistics Canada and the Council of Ministers of Education, Canada that provides a set of statistical measures on education systems in Canada.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Library of Medicine (2025). MeSH Population Groups (Type 5 SCR) [Dataset]. https://catalog.data.gov/dataset/mesh-population-groups-type-5-scr

MeSH Population Groups (Type 5 SCR)

Explore at:
Dataset updated
Jun 19, 2025
Dataset provided by
National Library of Medicine
Description

Working with partners across NIH, led by NIMHD and the NLM OBSSR-Behavioral Ontology Working Group, MeSH on November 29, 2022 added Federally recognized American Indian and Alaskan Native (AI/AN) tribal names and ethnic/ethnolinguistic minority terms as newly created type 5 SCR designated as “Population Groups”. These minority names (1,700+ terms) were mapped and reviewed by subject matter experts and scientists within NIH and from outside including Network of the National Library of Medicine members. Structure: All type 5 SCRs have common fields 1. CC=5 Population Group 2. ST=T098 Population Groups 3. HM= At least one HM is to an MH under Population Groups [M01.686] 4. TH= NIMHD(2023)

Search
Clear search
Close search
Google apps
Main menu