54 datasets found
  1. i

    Population and Family Health Survey 1997 - Jordan

    • catalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DOS) (2019). Population and Family Health Survey 1997 - Jordan [Dataset]. http://catalog.ihsn.org/catalog/182
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Department of Statistics (DOS)
    Time period covered
    1997
    Area covered
    Jordan
    Description

    Abstract

    The 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data

    Sampling procedure

    SAMPLE DESIGN AND IMPLEMENTATION

    The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.

    The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.

    UPDATING OF SAMPLING FRAME

    Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).

    The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.

    Cleaning operations

    Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.

    Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.

    Response rate

    A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.

    Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  2. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  3. c

    Synthetic Unit and Area Level EU-Survey of Income and Living Conditions...

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tzavidis, N (2025). Synthetic Unit and Area Level EU-Survey of Income and Living Conditions Sample and Population Data, 2016-2019 [Dataset]. http://doi.org/10.5255/UKDA-SN-854788
    Explore at:
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    University of Southampton
    Authors
    Tzavidis, N
    Time period covered
    Jan 1, 2016 - Mar 31, 2019
    Area covered
    Austria
    Variables measured
    Household
    Measurement technique
    The data are synthetically generated unit and area (district) level population and sample data. The use of synthetic data is for preventing disclosure issues with the real datasets. No survey or interviews are used in this case. Instead, data have been generated by repeated (Monte-Carlo) sampling of real EU-SILC (Survey of Income and Living Conditions) data in Austria to create a synthetic population of Austria. A sample is then selected from the population by using stratified simple random sampling within the Austrian districts.
    Description

    These are synthetically generated unit and area level population and sample data that can be used for testing model-based unit-level small area methods. To prevent disclosure issues the datasets have been generated by repeated (Monte-Carlo) sampling of real EU-SILC (Survey of Income and Living Conditions) data in Austria. The data include geographical identifies and can be used for fitting unit-level (Battese-Harter and Fuller type) models and area level models (Fay-Herriott- type) models. The datasets are part of the R package emdi. Examples of the use of the data can be found in the emdi manual available via https://cran.r-project.org/web/packages/emdi/emdi.pdf and in Kreutzmann et al. (2019)

    Kreutzmann, A. K., Pannier, S., Rojas-Perilla, N., Schmid, T., Templ, M., & Tzavidis, N. (2019). The R package emdi for the estimation and mapping of regional disaggregated indicators. Journal of Statistical Software, 91(7). https://doi.org/10.18637/jss.v091.i07

    Reliable statistics are crucial for policy relevant research. Small Area Estimation (SAE) methods generate robust reliable and consistent statistics at geographical scales for which survey data are either non-existent or too sparse to provide direct estimates of acceptable accuracy. The last decade has seen a rapid increase in the use of SAE. Statistical agencies and Governmental organisations are actively developing their own suites of estimates. In the UK the Office for National Statistics (ONS) has responded to user demands by producing estimates of average household income for wards and using SAE to answer queries from local authorities, policy advisers and government departments. The Welsh Assembly Government (WAG) is actively seeking to develop capacity for SAE. Public Health England produces SAEs of adolescent smoking and chronic kidney disease. Initial demands for small area statistics are now shifting to requirements for more complex statistics that extend beyond averages and proportions to encompass estimates of statistical distributions, multidimensional indicators (e.g. inequality and deprivation indicators) and methods for replacing the Census and adjusting Census results for undercount. These developing requirements pose significant methodological and applied real-world challenges. These challenges are deepened by different methodological approaches to SAE remaining largely unconnected, locked in disciplinary silos. The technical presentation of SAE also impedes more widespread uptake by social scientists and understanding by users. The proposed programme of work aims to (a) develop novel SAE methodologies to better serve the needs of users and producers of SAE (b) bridge different methodological approaches to SAE, (c) apply SAE for answering substantive questions in the social sciences and (d) 'Mainstream' SAE within the quantitative social sciences through the creation of methodologically comprehensive and accessible resources. The project comprises three work packages of methodological innovative research designed to deepen the understanding of SAE and achieve the aforementioned aims. The project will capitalise on a cross-disciplinary research team drawn together through an NCRM methodological network and reflecting a large part of the SAE expertise in the UK. Through long-standing collaborations with national and international agencies in the UK, Mexico and Brazil, which are placed at the centre of the project, we enjoy access to individual level secondary survey and Census data. Collaboration with key SAE users will ensure that the project remains relevant to user needs and that methodologies are used for expanding the set of small area statistics currently available. The involvement of international experts ensures the quality and relevance of the research. Substantive outputs will include SAEs of attributes of interest to users, including income, inequality, deprivation, health, ethnicity and a realistic pseudo-Census dataset for use by other researchers. The project will advance knowledge across disciplines in the social sciences including social statistics, applied economics, human geography and sociology. It will additionally impact on the production of official and Census statistics. The project is committed to adding value to NCRM's training and capacity building activities by developing new resources.

  4. i

    Demographic and Health Survey 1988 - Zimbabwe

    • catalog.ihsn.org
    • dev.ihsn.org
    • +2more
    Updated Jul 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Office (2017). Demographic and Health Survey 1988 - Zimbabwe [Dataset]. https://catalog.ihsn.org/catalog/2478
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Central Statistical Office
    Time period covered
    1988 - 1989
    Area covered
    Zimbabwe
    Description

    Abstract

    The Zimbabwe Demographic and Health Survey (ZDHS) is one of a series of surveys carried out by the Central Statistical Office (CSO) as part of the Zimbabwe National Household Survey Capability Programme. Conducted immediately following the second round of the Intercensal Demographic survey in 1988, the objective of the ZDHS was to make available to policy-makers and planners current information on fertility and child mortality levels and trends, contraceptive knowledge, approval and use and basic indicators of maternal and child health. To obtain these data, a nationally representative sample of 4201 women 15-49 was interviewed in the survey between September 1988 and January 1989.

    The ZDHS is one of a series of surveys undertaken by the Central Statistical Office (CSO) as part of the Zimbabwe National Household Survey Capability Programme (ZNHSCP). The ZDHS was conducted immediately after the second round of the Intercensal Demographic Survey (ICDS) in 1988. The main objective of the ZDHS was to provide information on: - fertility levels, trends and preferences; - family planning awareness, approval and use; - maternal and child health, including infant and child mortality; - and other topics relating to family health.

    The survey was designed to obtain information on family planning use similar to that provided by the 1984 Zimbabwe Reproductive Health Survey (ZRHS) and data on fertility and mortality which would complement information collected in the two rounds of the Intercensal Demographic Survey (ICDS). In addition, participation in the worldwide Demographic and Health Survey project offered an opportunity to strengthen survey capability in Zimbabwe, as well as further comparative research by contributing to the international demographic and health database.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Women age 15-49
    • Children under five years

    Universe

    The population covered by the 1988 ZDHS is defined as the universe of all women age 15-49 in Zimbabwe. Eligibility for the individual interview was determined on a de facto basis, i.e., a woman was eligible if she was 15 to 49 years of age and had spent the night prior to the household interview in the household, irrespective of whether she was a usual member of the household or not.

    Kind of data

    Sample survey data

    Sampling procedure

    To achieve this objective, a nationally representative, self-weighting sample of women 15- 49 was selected and interviewed in the survey. The ZDHS sample was drawn from the Zimbabwe Revised Master Sample (ZRMS). The ZRMS was based on the master sample constructed at the initiation of the Zimbabwe National Household Survey Capability Programme (ZNHSCP) and revised for the first round of the Intercensal Demographic Survey in 1987.

    The ZRMS can be considered as a two-stage sample, which is self-weighting at the household level. The sample is stratified by eight provinces and six sectors. The sectors, which are determined by land use include: (1) communal lands, (2) large-scale commercial farming areas, (3) small-scale commercial farming areas, (4) urban and semi-urban areas, (5) resettlement schemes, and (6) national parks, forest and other areas.

    A subsample of 167 enumeration areas (EAs) from the 273 EAs in the ZRMS was selected for the ZDHS, including 114 in rural areas and 53 in urban areas. The EAs were selected systematically with probability proportional to the number of households in the 1982 census. Household listings prepared prior to the 1987 ICDS were used in selecting the households to be included in the ZDHS from the selected EAs. All women 15-49 present in the households drawn for the ZDHS sample on the night before the interview were eligible for the survey.

    Mode of data collection

    Face-to-face

    Research instrument

    Two questionnaires were used for the ZDHS, a household and an individual woman's questionnaire. The questionnaires were adapted from the DHS Model "B" Questionnaire, intended for use in countries with low contraceptive prevalence. A pretest was conducted, and the questionnaires were modified, taking into account the pretest results. The household and individual questionnaires were administered in Shona, Ndebele, or English, with these major languages appearing on the same questionnaire.

    Information on the age and sex of all usual members and visitors in the selected households was recorded on the household questionnaire and used to identify women eligible for the individual questionnaire. Eligibility for the individual interview was determined on a de facto basis, i.e., a woman was eligible if she was 15 to 49 years of age and had spent the night prior to the household interview in the household, irrespective of whether she was a usual member of the household or not.

    The individual questionnaire was used to collect information on the following topics: - Respondent's background; - Reproduction; - Contraception; - Health and breastfeeding; - Marriage; - Fertility preferences; - Husband's background and women's work; - Height and weight of children 3-60 months.

    Cleaning operations

    Data entry and editing began in October 1988 and was completed in February 1989, two weeks after fieldwork ended. The initiation of data processing during the fieldwork allowed the errors that were detected to be communicated immediately to the field teams for corrective measures, thus improving the quality of the data. All data processing activities were carried out in Harare, by a team of five data capture operators under a data processing coordinator. The operators were responsible for office editing and coding, as well as for the entry of the questionnaires. The computer hardware consisted of three IBM-compatible micro-computers. The Integrated System for Survey Analysis (ISSA) software package, developed by IRD for the DHS programme, was used for all phases of the data entry, editing and tabulation. Range, skip and most consistency checks were performed during the data capture itself; only the more sophisticated consistency checks were done during secondary editing.

    Response rate

    Of the 4789 households selected for the ZDHS, 4337 were located in the field; of these, 4107 households were successfully interviewed. Within the households successfully interviewed, 4467 women were identified as eligible, and, among these eligible women, 4201 women were interviewed. The overall response rate, which is the product of the household (95 percent) and individual (94 percent) response rates was 89 percent.

    The overall response rate, which is the product of the household and individual response rate, was 89 percent for the whole sample. It was 90 percent or higher, except in Manicaland (89 percent), Mashonaland East (88 percent) and Harare/Chitungwiza (74 percent).

    Sampling error estimates

    Sampling error is a measure of the variability between all possible samples that could have been selected from the same population using the same design and size. For the entire population and for large subgroups, the ZDHS sample is sufficiently large so that the sampling error for most estimates is small. However, for small subgroups, sampling errors are larger and, thus, affect the reliability of the data. Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, ratio, etc.), i.e., the square root of the variance. The standard error can be used also to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic as measured in 95 percent of all possible samples with the same design will fall within a range of plus or minus two times the standard error for that statistic.

    The computations required to provide sampling errors for survey estimates which are based on complex sample designs like those used for the ZDHS survey are more complicated than those based on simple random samples. The software package CLUSTERS was used to assist in computing the sampling errors with the proper statistical methodology. The CLUSTERS program treats any percentage or average as a ratio estimate, r=y/x, where y represents the total sample value for variable y and x represents the total number of cases in the group or subgroup under consideration.

    In addition to the standard errors, CLUSTERS computes the design effect (DEFT) for each estimate, which is defined as the ratio between the standard error using the given sample design and the standard error that would result if a simple random sample had been used. A DEFT value of 1,0 indicates that the sample design is as efficient as a simple random sample, while a value greater than 1,0 indicates the increase in the sampling error due to the use of a more complex and less statistically efficient design. CLUSTERS also computes the relative error and confidence limits for estimates.

    Sampling errors are presented below for selected variables considered to be of major interest. Results are presented in the Final Report for the whole country, urban and rural areas, three broad age groups and three educationaI levels. For each variable, the type of statistic (mean, proportion) and the base population are given in B.1 of the Final Report. For each variable, Tables B.2-B.5 present the value of the statistic, its standard error, the number of unweighted and weighted cases, the design effect, the relative standard errors, and the 95 percent confidence limits.

    The relative standard error for most

  5. w

    Reproductive and Child Health Survey 1999 - Tanzania

    • microdata.worldbank.org
    • dev.ihsn.org
    • +2more
    Updated Jun 6, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2017). Reproductive and Child Health Survey 1999 - Tanzania [Dataset]. https://microdata.worldbank.org/index.php/catalog/1508
    Explore at:
    Dataset updated
    Jun 6, 2017
    Dataset authored and provided by
    National Bureau of Statistics (NBS)
    Time period covered
    1999
    Area covered
    Tanzania
    Description

    Abstract

    The Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.

    Geographic coverage

    National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.

    Analysis unit

    • Households
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.

    See detailed sample implementation in the APPENDIX A of the final report.

    Mode of data collection

    Face-to-face

    Research instrument

    The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.

    The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.

    All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.

    The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.

    The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.

    The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.

    Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.

    Response rate

    In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.

    In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.

    The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate

    Note: See detailed sampling error calculation in the APPENDIX B

  6. European Union Statistics on Income and Living Conditions 2012 -...

    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2019). European Union Statistics on Income and Living Conditions 2012 - Cross-Sectional User Database - Cyprus [Dataset]. http://catalog.ihsn.org/catalog/5608
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    Time period covered
    2012
    Area covered
    Cyprus
    Description

    Abstract

    In 2012, the EU-SILC instrument covered all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.

    There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.

    Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.

    This is the 3rd version of the 2012 Cross-Sectional User Database as released in July 2015.

    Geographic coverage

    The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland

    Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United Kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.

    Analysis unit

    • Households;
    • Individuals 16 years and older.

    Universe

    The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.

    For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.

    Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.

    The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.

    At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.

    According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:

    1. For all components of EU-SILC (whether survey or register based), the crosssectional and longitudinal (initial sample) data shall be based on a nationally representative probability sample of the population residing in private households within the country, irrespective of language, nationality or legal residence status. All private households and all persons aged 16 and over within the household are eligible for the operation.
    2. Representative probability samples shall be achieved both for households, which form the basic units of sampling, data collection and data analysis, and for individual persons in the target population.
    3. The sampling frame and methods of sample selection shall ensure that every individual and household in the target population is assigned a known and non-zero probability of selection.
    4. By way of exception, paragraphs 1 to 3 shall apply in Germany exclusively to the part of the sample based on probability sampling according to Article 8 of the Regulation of the European Parliament and of the Council (EC) No 1177/2003 concerning

    Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.

    Detailed information about sampling is available in Quality Reports in Related Materials.

    Mode of data collection

    Mixed

  7. a

    Population (by Atlanta Neighborhood Statistical Areas) 2019

    • hub.arcgis.com
    • gisdata.fultoncountyga.gov
    • +1more
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Population (by Atlanta Neighborhood Statistical Areas) 2019 [Dataset]. https://hub.arcgis.com/datasets/419ebd0e8d85497baeb6cfd648780377
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  8. Annual Population Survey, January - December, 2022

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office For National Statistics (2024). Annual Population Survey, January - December, 2022 [Dataset]. http://doi.org/10.5255/ukda-sn-9069-4
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Office For National Statistics
    Description
    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    Occupation data for 2021 and 2022
    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022

    APS Well-Being Datasets
    From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.

    APS disability variables
    Over time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage.

    End User Licence and Secure Access APS data
    Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:
    • age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child
    • family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family
    • nationality and country of origin
    • geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district
    • health: including main health problem, and current and past health problems
    • education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships
    • industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from
    • occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from
    • system variables: including week number when interview took place and number of households at address

    The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.

    Latest edition information

    For the fourth edition (March 2024), the smoking variables CIGEVER, CIGNOW and CIGSMK16 were added to the dataset.

  9. 2021 American Community Survey: B08016 | PLACE OF WORK FOR WORKERS 16 YEARS...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2021 American Community Survey: B08016 | PLACE OF WORK FOR WORKERS 16 YEARS AND OVER--METROPOLITAN STATISTICAL AREA LEVEL (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table?q=Commuting&tid=ACSDT1Y2021.B08016
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2021 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Workers include members of the Armed Forces and civilians who were at work last week..The 2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  10. General Household Survey 2021 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Mar 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2023). General Household Survey 2021 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/5776
    Explore at:
    Dataset updated
    Mar 8, 2023
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2021
    Area covered
    South Africa
    Description

    Abstract

    The GHS is an annual household survey which measures the living circumstances of South African households. The GHS collects data on education, health, and social development, housing, access to services and facilities, food security, and agriculture.

    Geographic coverage

    National coverage

    Analysis unit

    Households and individuals

    Universe

    The survey covers all de jure household members (usual residents) of households in the nine provinces of South Africa, and residents in workers' hostels. The survey does not cover collective living quarters such as student hostels, old age homes, hospitals, prisons, and military barracks.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    From 2015 the General Household Survey (GHS) uses a Master Sample (MS) frame developed in 2013 as a general-purpose sampling frame to be used for all Stats SA household-based surveys. This MS has design requirements that are reasonably compatible with the GHS. The 2013 Master Sample is based on information collected during the 2011 Census conducted by Stats SA. In preparation for Census 2011, the country was divided into 103 576 enumeration areas (EAs). The census EAs, together with the auxiliary information for the EAs, were used as the frame units or building blocks for the formation of primary sampling units (PSUs) for the Master Sample, since they covered the entire country, and had other information that is crucial for stratification and creation of PSUs. There are 3 324 primary sampling units (PSUs) in the Master Sample, with an expected sample of approximately 33 000 dwelling units (DUs). The number of PSUs in the current Master Sample (3 324) reflect an 8,0% increase in the size of the Master Sample compared to the previous (2008) Master Sample (which had 3 080 PSUs). The larger Master Sample of PSUs was selected to improve the precision (smaller coefficients of variation, known as CVs) of the GHS estimates. The Master Sample is designed to be representative at provincial level and within provinces at metro/non-metro levels. Within the metros, the sample is further distributed by geographical type. The three geography types are Urban, Tribal and Farms. This implies, for example, that within a metropolitan area, the sample is representative of the different geography types that may exist within that metro.

    The sample for the GHS is based on a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage.After allocating the sample to the provinces, the sample was further stratified by geography (primary stratification), and by population attributes using Census 2011 data (secondary stratification).

    Mode of data collection

    Computer Assisted Telephone Interview

    Research instrument

    Data was collected with a household questionnaire and a questionnaire administered to a household member to elicit information on household members.

    Data appraisal

    Since 2019, the questionnaire for the GHS series changed and the variables were also renamed. For correspondence between old names (GHS pre-2019) and new name (GHS post-2019), see the document ghs-2019-variables-renamed.

  11. w

    Demographic and Health Survey 2022 - Ghana

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2024). Demographic and Health Survey 2022 - Ghana [Dataset]. https://microdata.worldbank.org/index.php/catalog/6122
    Explore at:
    Dataset updated
    Jan 19, 2024
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    2022 - 2023
    Area covered
    Ghana
    Description

    Abstract

    The 2022 Ghana Demographic and Health Survey (2022 GDHS) is the seventh in the series of DHS surveys conducted by the Ghana Statistical Service (GSS) in collaboration with the Ministry of Health/Ghana Health Service (MoH/GHS) and other stakeholders, with funding from the United States Agency for International Development (USAID) and other partners.

    The primary objective of the 2022 GDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the GDHS collected information on: - Fertility levels and preferences, contraceptive use, antenatal and delivery care, maternal and child health, childhood mortality, childhood immunisation, breastfeeding and young child feeding practices, women’s dietary diversity, violence against women, gender, nutritional status of adults and children, awareness regarding HIV/AIDS and other sexually transmitted infections, tobacco use, and other indicators relevant for the Sustainable Development Goals - Haemoglobin levels of women and children - Prevalence of malaria parasitaemia (rapid diagnostic testing and thick slides for malaria parasitaemia in the field and microscopy in the lab) among children age 6–59 months - Use of treated mosquito nets - Use of antimalarial drugs for treatment of fever among children under age 5

    The information collected through the 2022 GDHS is intended to assist policymakers and programme managers in designing and evaluating programmes and strategies for improving the health of the country’s population.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    To achieve the objectives of the 2022 GDHS, a stratified representative sample of 18,450 households was selected in 618 clusters, which resulted in 15,014 interviewed women age 15–49 and 7,044 interviewed men age 15–59 (in one of every two households selected).

    The sampling frame used for the 2022 GDHS is the updated frame prepared by the GSS based on the 2021 Population and Housing Census.1 The sampling procedure used in the 2022 GDHS was stratified two-stage cluster sampling, designed to yield representative results at the national level, for urban and rural areas, and for each of the country’s 16 regions for most DHS indicators. In the first stage, 618 target clusters were selected from the sampling frame using a probability proportional to size strategy for urban and rural areas in each region. Then the number of targeted clusters were selected with equal probability systematic random sampling of the clusters selected in the first phase for urban and rural areas. In the second stage, after selection of the clusters, a household listing and map updating operation was carried out in all of the selected clusters to develop a list of households for each cluster. This list served as a sampling frame for selection of the household sample. The GSS organized a 5-day training course on listing procedures for listers and mappers with support from ICF. The listers and mappers were organized into 25 teams consisting of one lister and one mapper per team. The teams spent 2 months completing the listing operation. In addition to listing the households, the listers collected the geographical coordinates of each household using GPS dongles provided by ICF and in accordance with the instructions in the DHS listing manual. The household listing was carried out using tablet computers, with software provided by The DHS Program. A fixed number of 30 households in each cluster were randomly selected from the list for interviews.

    For further details on sample design, see APPENDIX A of the final report.

    Mode of data collection

    Face-to-face computer-assisted interviews [capi]

    Research instrument

    Four questionnaires were used in the 2022 GDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Ghana. In addition, a self-administered Fieldworker Questionnaire collected information about the survey’s fieldworkers.

    The GSS organized a questionnaire design workshop with support from ICF and obtained input from government and development partners expected to use the resulting data. The DHS Program optional modules on domestic violence, malaria, and social and behavior change communication were incorporated into the Woman’s Questionnaire. ICF provided technical assistance in adapting the modules to the questionnaires.

    Cleaning operations

    DHS staff installed all central office programmes, data structure checks, secondary editing, and field check tables from 17–20 October 2022. Central office training was implemented using the practice data to test the central office system and field check tables. Seven GSS staff members (four male and three female) were trained on the functionality of the central office menu, including accepting clusters from the field, data editing procedures, and producing reports to monitor fieldwork.

    From 27 February to 17 March, DHS staff visited the Ghana Statistical Service office in Accra to work with the GSS central office staff on finishing the secondary editing and to clean and finalize all data received from the 618 clusters.

    Response rate

    A total of 18,540 households were selected for the GDHS sample, of which 18,065 were found to be occupied. Of the occupied households, 17,933 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 15,317 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 15,014 women, yielding a response rate of 98%. In the subsample of households selected for the male survey, 7,263 men age 15–59 were identified as eligible for individual interviews and 7,044 were successfully interviewed.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Ghana Demographic and Health Survey (2022 GDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 GDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 GDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the GDHS 2022 is an SAS program. This program used the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables

    • Age distribution of eligible and interviewed women
    • Age distribution of eligible and interviewed men
    • Age displacement at age 14/15
    • Age displacement at age 49/50
    • Pregnancy outcomes by years preceding the survey
    • Completeness of reporting
    • Standardisation exercise results from anthropometry training
    • Height and weight data completeness and quality for children
    • Height measurements from random subsample of measured children
    • Interference in height and weight measurements of children
    • Interference in height and weight measurements of women and men
    • Heaping in anthropometric measurements for children (digit preference)
    • Observation of mosquito nets
    • Observation of handwashing facility
    • School attendance by single year of age
    • Vaccination cards photographed
    • Number of
  12. Data from: Fitting a Distribution to Censored Contamination Data Using...

    • acs.figshare.com
    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael S. Williams; Eric D. Ebel (2023). Fitting a Distribution to Censored Contamination Data Using Markov Chain Monte Carlo Methods and Samples Selected with Unequal Probabilities [Dataset]. http://doi.org/10.1021/es5035574.s003
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    ACS Publications
    Authors
    Michael S. Williams; Eric D. Ebel
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The fitting of statistical distributions to chemical and microbial contamination data is a common application in risk assessment. These distributions are used to make inferences regarding even the most pedestrian of statistics, such as the population mean. The reason for the heavy reliance on a fitted distribution is the presence of left-, right-, and interval-censored observations in the data sets, with censored observations being the result of nondetects in an assay, the use of screening tests, and other practical limitations. Considerable effort has been expended to develop statistical distributions and fitting techniques for a wide variety of applications. Of the various fitting methods, Markov Chain Monte Carlo methods are common. An underlying assumption for many of the proposed Markov Chain Monte Carlo methods is that the data represent independent and identically distributed (iid) observations from an assumed distribution. This condition is satisfied when samples are collected using a simple random sampling design. Unfortunately, samples of food commodities are generally not collected in accordance with a strict probability design. Nevertheless, pseudosystematic sampling efforts (e.g., collection of a sample hourly or weekly) from a single location in the farm-to-table continuum are reasonable approximations of a simple random sample. The assumption that the data represent an iid sample from a single distribution is more difficult to defend if samples are collected at multiple locations in the farm-to-table continuum or risk-based sampling methods are employed to preferentially select samples that are more likely to be contaminated. This paper develops a weighted bootstrap estimation framework that is appropriate for fitting a distribution to microbiological samples that are collected with unequal probabilities of selection. An example based on microbial data, derived by the Most Probable Number technique, demonstrates the method and highlights the magnitude of biases in an estimator that ignores the effects of an unequal probability sample design.

  13. S

    One Parent Families and Children by Gender of Parent

    • data.subak.org
    csv
    Updated Feb 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Economic Commission for Europe (2023). One Parent Families and Children by Gender of Parent [Dataset]. https://data.subak.org/dataset/one-parent-families-and-children-by-gender-of-parent
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 16, 2023
    Dataset provided by
    United Nations Economic Commission for Europe
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This dataset contains World One Parent Families and Children by Gender of Parent. Data from the United Nations Economic Commission for Europe , Export API data for more datasets to advance energy economics research.

    ####

    Source: UNECE Statistical Database, compiled from national official sources.**Definition:** One parent families are families composed by a lone parent with one or more children.*A child* refers to a blood, step- or adopted son or daughter (regardless of age or marital status) who has usual residence in the household of the parent, and who has no partner or own child(ren) in the same household.**General note:** Data come from population censuses, micro-censuses and household sample surveys, unless otherwise specified.

    ####

  14. Census 2011 - South Africa

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2019). Census 2011 - South Africa [Dataset]. https://catalog.ihsn.org/index.php/catalog/4092
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2011
    Area covered
    South Africa
    Description

    Abstract

    Censuses are principal means of collecting basic population and housing statistics required for social and economic development, policy interventions, their implementation and evaluation.The census plays an essential role in public administration. The results are used to ensure: • equity in distribution of government services • distributing and allocating government funds among various regions and districts for education and health services • delineating electoral districts at national and local levels, and • measuring the impact of industrial development, to name a few The census also provides the benchmark for all surveys conducted by the national statistical office. Without the sampling frame derived from the census, the national statistical system would face difficulties in providing reliable official statistics for use by government and the public. Census also provides information on small areas and population groups with minimum sampling errors. This is important, for example, in planning the location of a school or clinic. Census information is also invaluable for use in the private sector for activities such as business planning and market analyses. The information is used as a benchmark in research and analysis.

    Census 2011 was the third democratic census to be conducted in South Africa. Census 2011 specific objectives included: - To provide statistics on population, demographic, social, economic and housing characteristics; - To provide a base for the selection of a new sampling frame; - To provide data at lowest geographical level; and - To provide a primary base for the mid-year projections.

    Geographic coverage

    National

    Analysis unit

    Households, Individuals

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    About the Questionnaire : Much emphasis has been placed on the need for a population census to help government direct its development programmes, but less has been written about how the census questionnaire is compiled. The main focus of a population and housing census is to take stock and produce a total count of the population without omission or duplication. Another major focus is to be able to provide accurate demographic and socio-economic characteristics pertaining to each individual enumerated. Apart from individuals, the focus is on collecting accurate data on housing characteristics and services.A population and housing census provides data needed to facilitate informed decision-making as far as policy formulation and implementation are concerned, as well as to monitor and evaluate their programmes at the smallest area level possible. It is therefore important that Statistics South Africa collects statistical data that comply with the United Nations recommendations and other relevant stakeholder needs.

    The United Nations underscores the following factors in determining the selection of topics to be investigated in population censuses: a) The needs of a broad range of data users in the country; b) Achievement of the maximum degree of international comparability, both within regions and on a worldwide basis; c) The probable willingness and ability of the public to give adequate information on the topics; and d) The total national resources available for conducting a census.

    In addition, the UN stipulates that census-takers should avoid collecting information that is no longer required simply because it was traditionally collected in the past, but rather focus on key demographic, social and socio-economic variables.It becomes necessary, therefore, in consultation with a broad range of users of census data, to review periodically the topics traditionally investigated and to re-evaluate the need for the series to which they contribute, particularly in the light of new data needs and alternative data sources that may have become available for investigating topics formerly covered in the population census. It was against this background that Statistics South Africa conducted user consultations in 2008 after the release of some of the Community Survey products. However, some groundwork in relation to core questions recommended by all countries in Africa has been done. In line with users' meetings, the crucial demands of the Millennium Development Goals (MDGs) should also be met. It is also imperative that Stats SA meet the demands of the users that require small area data.

    Accuracy of data depends on a well-designed questionnaire that is short and to the point. The interview to complete the questionnaire should not take longer than 18 minutes per household. Accuracy also depends on the diligence of the enumerator and honesty of the respondent.On the other hand, disadvantaged populations, owing to their small numbers, are best covered in the census and not in household sample surveys.Variables such as employment/unemployment, religion, income, and language are more accurately covered in household surveys than in censuses.Users'/stakeholders' input in terms of providing information in the planning phase of the census is crucial in making it a success. However, the information provided should be within the scope of the census.

    1. The Household Questionnaire is divided into the following sections:
    2. Household identification particulars
    3. Individual particulars Section A: Demographics Section B: Migration Section C: General Health and Functioning Section D: Parental Survival and Income Section E: Education Section F: Employment Section G: Fertility (Women 12-50 Years Listed) Section H: Housing, Household Goods and Services and Agricultural Activities Section I: Mortality in the Last 12 Months The Household Questionnaire is available in Afrikaans; English; isiZulu; IsiNdebele; Sepedi; SeSotho; SiSwati;Tshivenda;Xitsonga

    4. The Transient and Tourist Hotel Questionnaire (English) is divided into the following sections:

    5. Name, Age, Gender, Date of Birth, Marital Status, Population Group, Country of birth, Citizenship, Province.

    6. The Questionnaire for Institutions (English) is divided into the following sections:

    7. Particulars of the institution

    8. Availability of piped water for the institution

    9. Main source of water for domestic use

    10. Main type of toilet facility

    11. Type of energy/fuel used for cooking, heating and lighting at the institution

    12. Disposal of refuse or rubbish

    13. Asset ownership (TV, Radio, Landline telephone, Refrigerator, Internet facilities)

    14. List of persons in the institution on census night (name, date of birth, sex, population group, marital status, barcode number)

    15. The Post Enumeration Survey Questionnaire (English)

    These questionnaires are provided as external resources.

    Cleaning operations

    Data editing and validation system The execution of each phase of Census operations introduces some form of errors in Census data. Despite quality assurance methodologies embedded in all the phases; data collection, data capturing (both manual and automated), coding, and editing, a number of errors creep in and distort the collected information. To promote consistency and improve on data quality, editing is a paramount phase in identifying and minimising errors such as invalid values, inconsistent entries or unknown/missing values. The editing process for Census 2011 was based on defined rules (specifications).

    The editing of Census 2011 data involved a number of sequential processes: selection of members of the editing team, review of Census 2001 and 2007 Community Survey editing specifications, development of editing specifications for the Census 2011 pre-tests (2009 pilot and 2010 Dress Rehearsal), development of firewall editing specifications and finalisation of specifications for the main Census.

    Editing team The Census 2011 editing team was drawn from various divisions of the organisation based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors. Census 2011 editing team was drawn from various divisions of the organization based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors.

    The Census 2011 questionnaire was very complex, characterised by many sections, interlinked questions and skipping instructions. Editing of such complex, interlinked data items required application of a combination of editing techniques. Errors relating to structure were resolved using structural query language (SQL) in Oracle dataset. CSPro software was used to resolve content related errors. The strategy used for Census 2011 data editing was implementation of automated error detection and correction with minimal changes. Combinations of logical and dynamic imputation/editing were used. Logical imputations were preferred, and in many cases substantial effort was undertaken to deduce a consistent value based on the rest of the household’s information. To profile the extent of changes in the dataset and assess the effects of imputation, a set of imputation flags are included in the edited dataset. Imputation flags values include the following: 0 no imputation was performed; raw data were preserved 1 Logical editing was performed, raw data were blank 2 logical editing was performed, raw data were not blank 3 hot-deck imputation was performed, raw data were blank 4 hot-deck imputation was performed, raw data were not blank

    Data appraisal

    Independent monitoring and evaluation of Census field activities Independent monitoring of the Census 2011 field activities was carried out by a team of 31 professionals and 381 Monitoring

  15. Demographic and Health Survey 2018 - Nigeria

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Population Commission (NPC) (2021). Demographic and Health Survey 2018 - Nigeria [Dataset]. https://catalog.ihsn.org/catalog/8783
    Explore at:
    Dataset updated
    Jan 16, 2021
    Dataset provided by
    National Population Commissionhttps://nationalpopulation.gov.ng/
    Authors
    National Population Commission (NPC)
    Time period covered
    2018
    Area covered
    Nigeria
    Description

    Abstract

    The primary objective of the 2018 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence of malaria, awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), disability, and other health-related issues such as smoking.

    The information collected through the 2018 NDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The 2018 NDHS also provides indicators relevant to the Sustainable Development Goals (SDGs) for Nigeria.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-49

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-5 years resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2018 NDHS is the Population and Housing Census of the Federal Republic of Nigeria (NPHC), which was conducted in 2006 by the National Population Commission. Administratively, Nigeria is divided into states. Each state is subdivided into local government areas (LGAs), and each LGA is divided into wards. In addition to these administrative units, during the 2006 NPHC each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2018 NDHS, is defined on the basis of EAs from the 2006 EA census frame. Although the 2006 NPHC did not provide the number of households and population for each EA, population estimates were published for 774 LGAs. A combination of information from cartographic material demarcating each EA and the LGA population estimates from the census was used to identify the list of EAs, estimate the number of households, and distinguish EAs as urban or rural for the survey sample frame. Before sample selection, all localities were classified separately into urban and rural areas based on predetermined minimum sizes of urban areas (cut-off points); consistent with the official definition in 2017, any locality with more than a minimum population size of 20,000 was classified as urban.

    The sample for the 2018 NDHS was a stratified sample selected in two stages. Stratification was achieved by separating each of the 36 states and the Federal Capital Territory into urban and rural areas. In total, 74 sampling strata were identified. Samples were selected independently in every stratum via a two-stage selection. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using a probability proportional to size selection during the first sampling stage.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four questionnaires were used for the 2018 NDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Nigeria. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.

    Cleaning operations

    The processing of the 2018 NDHS data began almost immediately after the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the NPC central office in Abuja. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding the open-ended questions. The NPC data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro software package. The concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in the second week of April 2019.

    Response rate

    A total of 41,668 households were selected for the sample, of which 40,666 were occupied. Of the occupied households, 40,427 were successfully interviewed, yielding a response rate of 99%. In the households interviewed, 42,121 women age 15-49 were identified for individual interviews; interviews were completed with 41,821 women, yielding a response rate of 99%. In the subsample of households selected for the male survey, 13,422 men age 15-59 were identified and 13,311 were successfully interviewed, yielding a response rate of 99%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Nigeria Demographic and Health Survey (NDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 NDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 NDHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Standardisation exercise results from anthropometry training - Height and weight data completeness and quality for children - Height measurements from random subsample of measured children - Sibship size and sex ratio of siblings - Pregnancy-related mortality trends - Data collection period - Malaria prevalence according to rapid diagnostic test (RDT)

    Note: See detailed data quality tables in APPENDIX C of the report.

  16. w

    Demographic and Health Survey 2018 - Zambia

    • microdata.worldbank.org
    Updated Feb 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Health (2020). Demographic and Health Survey 2018 - Zambia [Dataset]. https://microdata.worldbank.org/index.php/catalog/3597
    Explore at:
    Dataset updated
    Feb 25, 2020
    Dataset provided by
    Zambia Statistics Agency (ZamStats)
    Ministry of Health
    Time period covered
    2018 - 2019
    Area covered
    Zambia
    Description

    Abstract

    The primary objective of the 2018 ZDHS was to provide up-to-date estimates of basic demographic and health indicators. Specifically, the ZDHS collected information on: - Fertility levels and preferences; contraceptive use; maternal and child health; infant, child, and neonatal mortality levels; maternal mortality; and gender, nutrition, and awareness regarding HIV/AIDS and other health issues relevant to the achievement of the Sustainable Development Goals (SDGs) - Ownership and use of mosquito nets as part of the national malaria eradication programmes - Health-related matters such as breastfeeding, maternal and childcare (antenatal, delivery, and postnatal), children’s immunisations, and childhood diseases - Anaemia prevalence among women age 15-49 and children age 6-59 months - Nutritional status of children under age 5 (via weight and height measurements) - HIV prevalence among men age 15-59 and women age 15-49 and behavioural risk factors related to HIV - Assessment of situation regarding violence against women

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women age 15-49, all men age 15-59, and all children age 0-5 years who are usual members of the selected households or who spent the night before the survey in the selected households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2018 ZDHS is the Census of Population and Housing (CPH) of the Republic of Zambia, conducted in 2010 by ZamStats. Zambia is divided into 10 provinces. Each province is subdivided into districts, each district into constituencies, and each constituency into wards. In addition to these administrative units, during the 2010 CPH each ward was divided into convenient areas called census supervisory areas (CSAs), and in turn each CSA was divided into enumeration areas (EAs). An enumeration area is a geographical area assigned to an enumerator for the purpose of conducting a census count; according to the Zambian census frame, each EA consists of an average of 110 households.

    The current version of the EA frame for the 2010 CPH was updated to accommodate some changes in districts and constituencies that occurred between 2010 and 2017. The list of EAs incorporates census information on households and population counts. Each EA has a cartographic map delineating its boundaries, with identification information and a measure of size, which is the number of residential households enumerated in the 2010 CPH. This list of EAs was used as the sampling frame for the 2018 ZDHS.

    The 2018 ZDHS followed a stratified two-stage sample design. The first stage involved selecting sample points (clusters) consisting of EAs. EAs were selected with a probability proportional to their size within each sampling stratum. A total of 545 clusters were selected.

    The second stage involved systematic sampling of households. A household listing operation was undertaken in all of the selected clusters. During the listing, an average of 133 households were found in each cluster, from which a fixed number of 25 households were selected through an equal probability systematic selection process, to obtain a total sample size of 13,625 households. Results from this sample are representative at the national, urban and rural, and provincial levels.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Four questionnaires were used in the 2018 ZDHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s Model Questionnaires, were adapted to reflect the population and health issues relevant to Zambia. Input on questionnaire content was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international cooperating partners. After all questionnaires were finalised in English, they were translated into seven local languages: Bemba, Kaonde, Lozi, Lunda, Luvale, Nyanja, and Tonga. In addition, information about the fieldworkers for the survey was collected through a self-administered Fieldworker Questionnaire.

    Cleaning operations

    All electronic data files were transferred via a secure internet file streaming system to the ZamStats central office in Lusaka, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. The data were processed by two IT specialists and one secondary editor who took part in the main fieldwork training; they were supervised remotely by staff from The DHS Program. Data editing was accomplished using CSPro software. During the fieldwork, field-check tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July 2018 and completed in March 2019.

    Response rate

    Of the 13,595 households in the sample, 12,943 were occupied. Of these occupied households, 12,831 were successfully interviewed, yielding a response rate of 99%.

    In the interviewed households, 14,189 women age 15-49 were identified as eligible for individual interviews; 13,683 women were interviewed, yielding a response rate of 96% (the same rate achieved in the 2013-14 survey). A total of 13,251 men were eligible for individual interviews; 12,132 of these men were interviewed, producing a response rate of 92% (a 1 percentage point increase from the previous survey).

    Of the households successfully interviewed, 12,505 were interviewed in 2018 and 326 in 2019. As the large majority of households were interviewed in 2018 and the year for reference indicators is 2018.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2018 Zambia Demographic and Health Survey (ZDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2018 ZDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2018 ZDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Completeness of information on siblings - Sibship size and sex ratio of siblings - Height and weight data completeness and quality for children - Number of enumeration areas completed by month, according to province, Zambia DHS 2018

    Note: Data quality tables are presented in APPENDIX C of the report.

  17. d

    Integrated Household Survey, January - December, 2010 - Dataset - B2FIND

    • b2find.dkrz.de
    Updated Dec 15, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). Integrated Household Survey, January - December, 2010 - Dataset - B2FIND [Dataset]. https://b2find.dkrz.de/dataset/9333dda9-fa40-5e4e-b0d5-77846d334c27
    Explore at:
    Dataset updated
    Dec 15, 2010
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Integrated Household Survey (IHS), which ran from 2009-2014, was a composite survey combining questions asked on a number of social surveys conducted by the Office for National Statistics (ONS) to produce a dataset of 'core' variables. The ONS stopped producing IHS datasets from 2015 onwards; variables covering health, smoking prevalence, forces veterans, sexual identity and well-being will be incorporated into the Annual Population Survey - see the Which surveys (or modules) are included in the IHS? and What is the IHS? FAQ pages for further details. Background and history of the IHS The aim of the IHS was to produce high-level estimates for particular themes to a higher precision and lower geographic level than current ONS social surveys. The 'core' set contained around 100 questions, but a respondent was only asked a proportion of those depending on routing from answers to questions. The core questions were asked, where possible, at the beginning of the component surveys. In January 2008, a set of core questions was introduced within three ONS surveys in the General Lifestyle Survey, Living Costs and Food Survey, and the Opinions and Lifestyle Survey. In April 2008 the IHS core questions were also introduced on the English Housing Survey, bringing the family of modules on the IHS up to four. The IHS dataset for 2008-2009 was used as a pilot for the concept, developing the systems and designing the weighting methodology. The IHS data for that period have not been published as they do not provide better quality information than that within existing surveys. Hence, the earliest IHS data currently available cover 2009-2010. In April 2009 the IHS core questions were introduced on the Labour Force Survey (LFS) and Annual Population Survey (APS) questionnaires and from June 2009 the Life Opportunities Survey (LOS, which also ran from 2009-2014) was included in the IHS family of modules. With the inclusion of these new surveys the IHS became complete, with an achieved annual sample size of approximately 450,000 individuals from interviews undertaken in Great Britain and Northern Ireland. Therefore, the first IHS dataset released covers the period April 2009-March 2010, starting the IHS data series from the point that all surveys were included. The large sample size and UK-wide coverage meant that various geographical breakdowns were possible in the IHS, and it is possible to use a geographical hierarchy to drill down to lower level detail within an area. The IHS also contained data collected from the following surveys: General Lifestyle Survey; Living Costs and Food Survey; Opinions and Lifestyle Survey; English Housing Survey; Labour Force Survey; Annual Population Survey; and Life Opportunities Survey. All questions had been removed from the component surveys by 2014 and the IHS closed that year. Further information is available from the ONS Integrated Household Survey (Experimental statistics): January to December 2014 webpage. Available IHS data: End User Licence and Secure Access Users should note that there are two versions of the IHS. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version (SN 8075). The Secure Access version contains more detailed variables relating to age, age of youngest dependent child, country of birth, family unit type, household and household reference person, industry class, sub-class and division, month left last job, cohabitation, country of residence history, multiple households at address, nationality, New Deal training types, National Statistics Socio-Economic Classification (NS-SEC) long version, qualifications, household relationships, minor Standard Occupational Classification (SOC) groups, sexual identity, training and working age. The more detailed geographic variables present include county, unitary/local authority, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions and Training and Enterprise Councils (TECs). Users should note that the user guide also mentions variables that are not included in either the EUL or Secure Access datasets held at the Archive. The EUL version contains less detailed variables. For example, the lowest geography available is Government Office Region, only major (3-digit) SOC groups are included for main, second and last job, and only industry sector for main, second and last job. Users are advised to first obtain the standard EUL version of the data before making an application for the Secure Access version to see if they are sufficient for their research requirements. The SL version of the IHS January - December, 2010 is available under SN 6808. Main Topics:The IHS core questions cover several themes. These include:economic activityeducationhealth and disabilityidentityincomeIncome variables: Users should note that while income data are collected within the IHS and questions are included in the questionnaire, ONS have so far not been able to harmonise the income variables across the different surveys that comprise the IHS. Therefore, there are currently no income variables included in datasets deposited at the Archive; the variables are only included in the Government Statistical Services (GSS) client and ONS internal research datasets. For further details, see the IHS user guide. Each of the surveys comprising the IHS have their own sampling design, meaning that the IHS includes clustered and non-clustered, multistage and single stage component samples and also cross-sectional and longitudinal data.

  18. Integrated Household Survey, January - December, 2014

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Survey Division Office For National Statistics (2015). Integrated Household Survey, January - December, 2014 [Dataset]. http://doi.org/10.5255/ukda-sn-7839-1
    Explore at:
    Dataset updated
    2015
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    DataCitehttps://www.datacite.org/
    Authors
    Social Survey Division Office For National Statistics
    Description

    The Integrated Household Survey (IHS), which ran from 2009-2014, was a composite survey combining questions asked on a number of social surveys conducted by the Office for National Statistics (ONS) to produce a dataset of 'core' variables. The ONS stopped producing IHS datasets from 2015 onwards; variables covering health, smoking prevalence, forces veterans, sexual identity and well-being will be incorporated into the Annual Population Survey - see the Which surveys (or modules) are included in the IHS? and What is the IHS? FAQ pages for further details.

    Background and history of the IHS
    The aim of the IHS was to produce high-level estimates for particular themes to a higher precision and lower geographic level than current ONS social surveys. The 'core' set contained around 100 questions, but a respondent was only asked a proportion of those depending on routing from answers to questions. The core questions were asked, where possible, at the beginning of the component surveys.
    In January 2008, a set of core questions was introduced within three ONS surveys in the General Lifestyle Survey, Living Costs and Food Survey, and the Opinions and Lifestyle Survey. In April 2008 the IHS core questions were also introduced on the English Housing Survey, bringing the family of modules on the IHS up to four. The IHS dataset for 2008-2009 was used as a pilot for the concept, developing the systems and designing the weighting methodology. The IHS data for that period have not been published as they do not provide better quality information than that within existing surveys. Hence, the earliest IHS data currently available cover 2009-2010. In April 2009 the IHS core questions were introduced on the Labour Force Survey (LFS) and Annual Population Survey (APS) questionnaires and from June 2009 the Life Opportunities Survey (LOS, which also ran from 2009-2014) was included in the IHS family of modules. With the inclusion of these new surveys the IHS became complete, with an achieved annual sample size of approximately 450,000 individuals from interviews undertaken in Great Britain and Northern Ireland. Therefore, the first IHS dataset released covers the period April 2009-March 2010, starting the IHS data series from the point that all surveys were included. The large sample size and UK-wide coverage meant that various geographical breakdowns were possible in the IHS, and it is possible to use a geographical hierarchy to drill down to lower level detail within an area. The IHS also contained data collected from the following surveys: General Lifestyle Survey; Living Costs and Food Survey; Opinions and Lifestyle Survey; English Housing Survey; Labour Force Survey; Annual Population Survey; and Life Opportunities Survey. All questions had been removed from the component surveys by 2014 and the IHS closed that year. Further information is available from the ONS Integrated Household Survey (Experimental statistics): January to December 2014 webpage.

    Available IHS data: End User Licence and Secure Access
    Users should note that there are two versions of the IHS. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version (SN 8075). The Secure Access version contains more detailed variables relating to age, age of youngest dependent child, country of birth, family unit type, household and household reference person, industry class, sub-class and division, month left last job, cohabitation, country of residence history, multiple households at address, nationality, New Deal training types, National Statistics Socio-Economic Classification (NS-SEC) long version, qualifications, household relationships, minor Standard Occupational Classification (SOC) groups, sexual identity, training and working age. The more detailed geographic variables present include county, unitary/local authority, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions and Training and Enterprise Councils (TECs). Users should note that the user guide also mentions variables that are not included in either the EUL or Secure Access datasets held at the Archive.

    The EUL version contains less detailed variables. For example, the lowest geography available is Government Office Region, only major (3-digit) SOC groups are included for main, second and last job, and only industry sector for main, second and last job. Users are advised to first obtain the standard EUL version of the data before making an application for the Secure Access version to see if they are sufficient for their research requirements.

    The Special Licence version of the IHS January - December, 2014 is available under SN 7840.

  19. T

    Trips by Distance

    • data.bts.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Apr 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maryland Transportation Institute and Center for Advanced Transportation Technology Laboratory at the University of Maryland (2024). Trips by Distance [Dataset]. https://data.bts.gov/Research-and-Statistics/Trips-by-Distance/w96p-f2qv
    Explore at:
    csv, json, tsv, application/rssxml, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 30, 2024
    Dataset authored and provided by
    Maryland Transportation Institute and Center for Advanced Transportation Technology Laboratory at the University of Maryland
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    How many people are staying at home? How far are people traveling when they don’t stay home? Which states and counties have more people taking trips? The Bureau of Transportation Statistics (BTS) now provides answers to those questions through our mobility statistics program.

    The "Trips by Distance" data and number of people staying home and not staying home are estimated for the Bureau of Transportation Statistics by the Maryland Transportation Institute and Center for Advanced Transportation Technology Laboratory at the University of Maryland. The travel statistics are produced from an anonymized national panel of mobile device data from multiple sources. All data sources used in the creation of the metrics contain no personal information. Data analysis is conducted at the aggregate national, state, and county levels. A weighting procedure expands the sample of millions of mobile devices, so the results are representative of the entire population in a nation, state, or county. To assure confidentiality and support data quality, no data are reported for a county if it has fewer than 50 devices in the sample on any given day.

    Trips are defined as movements that include a stay of longer than 10 minutes at an anonymized location away from home. Home locations are imputed on a weekly basis. A movement with multiple stays of longer than 10 minutes before returning home is counted as multiple trips. Trips capture travel by all modes of transportation. including driving, rail, transit, and air.

    The daily travel estimates are from a mobile device data panel from merged multiple data sources that address the geographic and temporal sample variation issues often observed in a single data source. The merged data panel only includes mobile devices whose anonymized location data meet a set of data quality standards, which further ensures the overall data quality and consistency. The data quality standards consider both temporal frequency and spatial accuracy of anonymized location point observations, temporal coverage and representativeness at the device level, spatial representativeness at the sample and county level, etc. A multi-level weighting method that employs both device and trip-level weights expands the sample to the underlying population at the county and state levels, before travel statistics are computed.

    These data are experimental and may not meet all of our quality standards. Experimental data products are created using new data sources or methodologies that benefit data users in the absence of other relevant products. We are seeking feedback from data users and stakeholders on the quality and usefulness of these new products. Experimental data products that meet our quality standards and demonstrate sufficient user demand may enter regular production if resources permit.

    These data are made available under a public domain license. Data should be attributed to the "Maryland Transportation Institute and Center for Advanced Transportation Technology Laboratory at the University of Maryland and the United States Bureau of Transportation Statistics."

    Daily data for a given week will be uploaded to the BTS website within 9-10 days of the end of the week in question (e.g., data for Sunday September 17-Saturday September 23 would be updated on Tuesday, October 3). All BTS visualizations and tables that rely on these data will update at approximately 10am ET on days when new data are received, processed, and uploaded.

    The methodology used to develop these data can be found at: https://rosap.ntl.bts.gov/view/dot/67520.

  20. a

    Population by Sex and Age (by Atlanta Neighborhood Statistical Areas) 2019

    • opendata.atlantaregional.com
    • hub.arcgis.com
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Population by Sex and Age (by Atlanta Neighborhood Statistical Areas) 2019 [Dataset]. https://opendata.atlantaregional.com/datasets/GARC::population-by-sex-and-age-by-atlanta-neighborhood-statistical-areas-2019
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of Statistics (DOS) (2019). Population and Family Health Survey 1997 - Jordan [Dataset]. http://catalog.ihsn.org/catalog/182

Population and Family Health Survey 1997 - Jordan

Explore at:
Dataset updated
Mar 29, 2019
Dataset authored and provided by
Department of Statistics (DOS)
Time period covered
1997
Area covered
Jordan
Description

Abstract

The 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.

Geographic coverage

National

Analysis unit

  • Household
  • Children under five years
  • Women age 15-49
  • Men

Kind of data

Sample survey data

Sampling procedure

SAMPLE DESIGN AND IMPLEMENTATION

The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.

The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.

UPDATING OF SAMPLING FRAME

Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.

Note: See detailed description of sample design in APPENDIX A of the survey report.

Mode of data collection

Face-to-face

Research instrument

The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).

The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.

Cleaning operations

Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.

Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.

Response rate

A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.

Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

Sampling error estimates

The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.

Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.

Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.

Data appraisal

Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

Note: See detailed tables in APPENDIX C of the survey report.

Search
Clear search
Close search
Google apps
Main menu