100+ datasets found
  1. N

    Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Excel township from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/excel-township-mn-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel Township, Minnesota
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Excel township is shown in this column.
    • Year on Year Change: This column displays the change in Excel township population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here

  2. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  3. European Union Statistics on Income and Living Conditions 2009 -...

    • catalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2019). European Union Statistics on Income and Living Conditions 2009 - Cross-Sectional User Database - France [Dataset]. https://catalog.ihsn.org/index.php/catalog/5653
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    Time period covered
    2009
    Area covered
    France
    Description

    Abstract

    In 2009, the EU-SILC instrument covered all EU Member States plus Iceland, Turkey, Norway and Switzerland. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.

    There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.

    Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.

    The 7th version of the 2009 Cross-Sectional User Database (UDB) as released in July 2015 is documented here.

    Geographic coverage

    The survey covers following countries: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, United Kingdom, Iceland, Norway.

    Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.

    Analysis unit

    • Households;
    • Individuals 16 years and older.

    Universe

    The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.

    For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.

    Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.

    The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.

    At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.

    According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:

    1. For all components of EU-SILC (whether survey or register based), the crosssectional and longitudinal (initial sample) data shall be based on a nationally representative probability sample of the population residing in private households within the country, irrespective of language, nationality or legal residence status. All private households and all persons aged 16 and over within the household are eligible for the operation.
    2. Representative probability samples shall be achieved both for households, which form the basic units of sampling, data collection and data analysis, and for individual persons in the target population.
    3. The sampling frame and methods of sample selection shall ensure that every individual and household in the target population is assigned a known and non-zero probability of selection.
    4. By way of exception, paragraphs 1 to 3 shall apply in Germany exclusively to the part of the sample based on probability sampling according to Article 8 of the Regulation of the European Parliament and of the Council (EC) No 1177/2003 concerning

    Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.

    Detailed information about sampling is available in Quality Reports in Related Materials.

    Mode of data collection

    Mixed

  4. N

    Snowflake, AZ Age Group Population Dataset: A Complete Breakdown of...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Snowflake, AZ Age Group Population Dataset: A Complete Breakdown of Snowflake Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aab8cd11-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Snowflake
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Snowflake population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Snowflake. The dataset can be utilized to understand the population distribution of Snowflake by age. For example, using this dataset, we can identify the largest age group in Snowflake.

    Key observations

    The largest age group in Snowflake, AZ was for the group of age 10 to 14 years years with a population of 873 (14.10%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Snowflake, AZ was the 80 to 84 years years with a population of 48 (0.78%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Snowflake is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Snowflake total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Snowflake Population by Age. You can refer the same here

  5. d

    Public Use Microdata Samples (PUMS)

    • datasets.ai
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • +1more
    21, 22
    Updated Sep 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2024). Public Use Microdata Samples (PUMS) [Dataset]. https://datasets.ai/datasets/public-use-microdata-samples-pums
    Explore at:
    21, 22Available download formats
    Dataset updated
    Sep 7, 2024
    Dataset authored and provided by
    National Aeronautics and Space Administration
    Description

    The Public Use Microdata Samples (PUMS) are computer-accessible files containing records for a sample of housing Units, with information on the characteristics of each housing Unit and the people in it for 1940-1990. Within the limits of sample size and geographical detail, these files allow users to prepare virtually any tabulations they require. Each datafile is documented in a codebook containing a data dictionary and supporting appendix information. Electronic versions for the codebooks are only available for the 1980 and 1990 datafiles. Identifying information has been removed to protect the confidentiality of the respondents. PUMS is produced by the United States Census Bureau (USCB) and is distributed by USCB, Inter-university Consortium for Political and Social Research (ICPSR), and Columbia University Center for International Earth Science Information Network (CIESIN).

  6. Annual Population Survey, 2004-2023: Secure Access

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Survey Division Office For National Statistics (2025). Annual Population Survey, 2004-2023: Secure Access [Dataset]. http://doi.org/10.5255/ukda-sn-6721-30
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Social Survey Division Office For National Statistics
    Description

    Background
    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS) (held at the UK Data Archive under GN 33246), all of its associated LFS boosts and the APS boost. Thus, the APS combines results from five different sources: the LFS (waves 1 and 5); the English Local Labour Force Survey (LLFS), the Welsh Labour Force Survey (WLFS), the Scottish Labour Force Survey (SLFS) and the Annual Population Survey Boost Sample (APS(B) - however, this ceased to exist at the end of December 2005, so APS data from January 2006 onwards will contain all the above data apart from APS(B)). Users should note that the LLFS, WLFS, SLFS and APS(B) are not held separately at the UK Data Archive. For further detailed information about methodology, users should consult the Labour Force Survey User Guide, selected volumes of which have been included with the APS documentation for reference purposes (see 'Documentation' table below).

    The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples such as the WLFS and SLFS, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    Secure Access APS data
    Secure Access datasets for the APS include additional variables not included in the standard End User Licence (EUL) versions (see under GN 33357). Extra variables that typically can be found in the Secure Access version but not in the EUL versions relate to:

    • geography
    • types of benefits claimed
    • qualifications, education and training, including level of highest qualification, qualifications below highest level, class of first degree, single subject of degree, qualifications from Government schemes, number of O-levels/GCSEs etc passed, type of 'other qualification', type of other work-related or vocational qualifications, qualifications related to work, sources of qualifications, qualifications from school, level of Welsh baccalaureate
    • frequency of Welsh speaking
    • casual/holiday work
    • regular/normal work pattern
    • reasons not in work or for leaving work, reasons not looking for work
    • payment of own National Insurance and tax
    • smoking habits
    • single year of age
    • health issues
    • learning difficulty/disability
    • number of bedrooms
    • serving in armed forces
    • marital status
    • main reason for coming to the UK

    The EUL version contains less detailed variables. For example, the lowest geography is Government Office Region, only banded age is available, only 3-digit SOC is available for main, second and last job, and only industry division for main, second and last job.

    Prospective users of the Secure Access version of the APS will need to fulfil additional requirements, commencing with the completion of extra application forms to demonstrate to the data owners exactly why they need access to the extra, more detailed variables, in order to obtain permission to use that version. Secure Access data users must also complete face-to-face training and agree to the Secure Access User Agreement and Licence Compliance Policy (see 'Access' section below). Therefore, users are encouraged to download and inspect the EUL version of the data prior to ordering the Secure Access. Further details and links to all APS studies available from the UK Data Archive can be found via the APS Key Data series webpage.

    Documentation and coding frames
    The APS is compiled from variables present in the LFS. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation (e.g. coding frames for education, industrial and geographic variables, which are held in LFS User Guide Vol.5, Classifications), users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    Disability variables from 2013 onwards - LFS and APS
    ONS have provided some information on changes since 2013 to the disability variables available on the LFS and APS. The Disability Discrimination Act (DDA) disabled (current disability) category within the historic DISCURR variable no longer corresponds with the advised legal definition of 'current disability'. DISCURR should only be available on LFS microdata from Spring 1998 to January-March 2013 (JM13); beyond that point users should ignore or delete it. In addition, the same 'DDA disabled (current disability)' category within variable DISCURR13 is also not the most appropriate variable to use because a) it is not comparable to the corresponding category in variable DISCURR due to question changes, and b) it no longer measures either the DDA definition of disability or the latest Equality Act definition of disability. However, DISCURR13 is available from the April-March 2013 quarter (AJ13) onwards and was introduced to demonstrate that the variables used to compile DISCURR had also changed from that quarter. Therefore, users are advised to use the disability variable DISEA from AJ13 onwards, which reflects the Equality Act 2010 legal definition of 'disabled', measured according to the GSS Harmonised Standard on health conditions and illnesses. The harmonised disability variables DISEA and DISCURR13 should both be present on the APS person microdata from April 2013-March 2014 (A13M14) onwards. This ensures that APS users have a complete 12 months' data on which to base analysis of the variables. DISCURR should only be present on APS microdata up to and including April 2012-March 2013 (A12M13).

    Variables DISEA and LNGLST
    Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.

    An article explaining the quality assurance investigations that have been conducted so far is available on the ONS Methodology webpage. For any queries about Dataset A08 please email Labour.Market@ons.gov.uk.

    Occupation data for 2021 and 2022 data files
    The ONS have identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. For further information on this issue, please see: https://www.ons.gov.uk/news/statementsandletters/occupationaldatainonssurveys.

    Latest edition information:
    For the thirty-first edition (April 2025), a data file for July 2022 to June 2023 has been added to the study.

  7. w

    Synthetic Data for an Imaginary Country, Sample, 2023 - World

    • microdata.worldbank.org
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Data Group, Data Analytics Unit (2023). Synthetic Data for an Imaginary Country, Sample, 2023 - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/5906
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Development Data Group, Data Analytics Unit
    Time period covered
    2023
    Area covered
    World, World
    Description

    Abstract

    The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.

    The full-population dataset (with about 10 million individuals) is also distributed as open data.

    Geographic coverage

    The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.

    Analysis unit

    Household, Individual

    Universe

    The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.

    Kind of data

    ssd

    Sampling procedure

    The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.

    Mode of data collection

    other

    Research instrument

    The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.

    Cleaning operations

    The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.

    Response rate

    This is a synthetic dataset; the "response rate" is 100%.

  8. N

    Reliance, SD Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Reliance, SD Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Reliance from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/reliance-sd-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Dakota, Reliance
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Reliance population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Reliance across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Reliance was 127, a 0.78% decrease year-by-year from 2022. Previously, in 2022, Reliance population was 128, a decline of 1.54% compared to a population of 130 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Reliance decreased by 80. In this period, the peak population was 216 in the year 2017. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Reliance is shown in this column.
    • Year on Year Change: This column displays the change in Reliance population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Reliance Population by Year. You can refer the same here

  9. N

    Two Creeks, Wisconsin Census Bureau Gender Demographics and Population...

    • neilsberg.com
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Two Creeks, Wisconsin Census Bureau Gender Demographics and Population Distribution Across Age Datasets [Dataset]. https://www.neilsberg.com/research/datasets/e1ad53a4-52cf-11ee-804b-3860777c1fe6/
    Explore at:
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Two Creeks, Wisconsin
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Two Creeks town population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Two Creeks town.

    Content

    The dataset constitues the following two datasets across these two themes

    • Two Creeks, Wisconsin Population Breakdown by Gender
    • Two Creeks, Wisconsin Population Breakdown by Gender and Age

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  10. w

    Global Financial Inclusion (Global Findex) Database 2011 - Angola

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 15, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2015). Global Financial Inclusion (Global Findex) Database 2011 - Angola [Dataset]. https://microdata.worldbank.org/index.php/catalog/1119
    Explore at:
    Dataset updated
    Apr 15, 2015
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2011
    Area covered
    Angola
    Description

    Abstract

    Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector - the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies.

    The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.

    Geographic coverage

    The sample excludes some rural areas because of inaccessibility and security risks. The excluded area represents approximately 15 percent of the total adult population.

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2011 calendar year, covering more than 150,000 adults in 148 economies and representing about 97 percent of the world's population. Since 2005, Gallup has surveyed adults annually around the world, using a uniform methodology and randomly selected, nationally representative samples. The second round of Global Findex indicators was collected in 2014 and is forthcoming in 2015. The set of indicators will be collected again in 2017.

    Surveys were conducted face-to-face in economies where landline telephone penetration is less than 80 percent, or where face-to-face interviewing is customary. The first stage of sampling is the identification of primary sampling units, consisting of clusters of households. The primary sampling units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid.

    Surveys were conducted by telephone in economies where landline telephone penetration is over 80 percent. The telephone surveys were conducted using random digit dialing or a nationally representative list of phone numbers. In selected countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to teach a person in each household, spread over different days and times of year.

    The sample size in Angola was 1,000 individuals.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup, Inc. also provided valuable input. The questionnaire was piloted in over 20 countries using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.

    Questions on insurance, mobile payments, and loan purposes were asked only in developing economies. The indicators on awareness and use of microfinance insitutions (MFIs) are not included in the public dataset. However, adults who report saving at an MFI are considered to have an account; this is reflected in the composite account indicator.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country- and indicator-specific standard errors, refer to the Annex and Country Table in Demirguc-Kunt, Asli and L. Klapper. 2012. "Measuring Financial Inclusion: The Global Findex." Policy Research Working Paper 6025, World Bank, Washington, D.C.

  11. f

    Population-based estimates of engagement in HIV care and mortality using...

    • figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Becky L. Genberg; Joseph W. Hogan; Yizhen Xu; Monicah Nyambura; Caren Tarus; Elyne Rotich; Catherine Kafu; Juddy Wachira; Suzanne Goodrich; Paula Braitstein (2023). Population-based estimates of engagement in HIV care and mortality using double-sampling methods following home-based counseling and testing in western Kenya [Dataset]. http://doi.org/10.1371/journal.pone.0223187
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Becky L. Genberg; Joseph W. Hogan; Yizhen Xu; Monicah Nyambura; Caren Tarus; Elyne Rotich; Catherine Kafu; Juddy Wachira; Suzanne Goodrich; Paula Braitstein
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kenya
    Description

    IntroductionData on engagement in HIV care from population-based samples in sub-Saharan Africa are limited. The objective of this study was to use double-sampling methods to estimate linkage to HIV care, ART initiation, and mortality among all adults diagnosed with HIV by a comprehensive home-based counseling and testing (HBCT) program in western Kenya.MethodsHBCT was conducted door-to-door from December 2009 to April 2011 in three sub-counties of western Kenya by AMPATH (Academic Model Providing Access to Healthcare). For those identified as HIV-positive, data were merged with electronic medical records to determine engagement with HIV care. A randomly-drawn follow-up sample of 120 adults identified via HBCT who had not linked to care as of June 2015 in Bunyala sub-county were visited by trained fieldworkers to ascertain HIV care engagement and vital status. Double-sampled data were used to generate, via multinomial regression, predicted probabilities of engagement in care and mortality among those whose status could not be ascertained by matching with the electronic medical records in the three catchments.ResultsIncorporating information from the double-sampling yielded estimates of prospective linkage to HIV care that ranged from 40–45%. Mortality estimates of those who did not engage in care following HBCT ranged from 12–16%. Among those who linked to care following HBCT, between 72–81% initiated ART.DiscussionIn settings without universal national identifiers, rates of linkage to care from community-based programs may be subject to substantial underestimation. Follow-up samples of those with missing information can be used to partially correct this bias, as has been demonstrated previously for mortality among those who were lost-to-care programs. There is a need for harmonized data systems across health systems and programs.

  12. Annual Population Survey Three-Year Pooled Dataset, January 2021 - December...

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office For National Statistics (2024). Annual Population Survey Three-Year Pooled Dataset, January 2021 - December 2023 [Dataset]. http://doi.org/10.5255/ukda-sn-9291-1
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    DataCitehttps://www.datacite.org/
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Office For National Statistics
    Description
    The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at the local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS), all its associated LFS boosts and the APS boost. The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.

    For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.

    Occupation data for 2021 and 2022
    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022

    APS Well-Being Datasets
    From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.

    APS disability variables
    Over time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage.

    End User Licence and Secure Access APS data
    Users should note that there are two versions of each APS dataset. One is available under the standard End User Licence (EUL) agreement, and the other is a Secure Access version. The EUL version includes Government Office Region geography, banded age, 3-digit SOC and industry sector for main, second and last job. The Secure Access version contains more detailed variables relating to:
    • age: single year of age, year and month of birth, age completed full-time education and age obtained highest qualification, age of oldest dependent child and age of youngest dependent child
    • family unit and household: including a number of variables concerning the number of dependent children in the family according to their ages, relationship to head of household and relationship to head of family
    • nationality and country of origin
    • geography: including county, unitary/local authority, place of work, Nomenclature of Territorial Units for Statistics 2 (NUTS2) and NUTS3 regions, and whether lives and works in same local authority district
    • health: including main health problem, and current and past health problems
    • education and apprenticeship: including numbers and subjects of various qualifications and variables concerning apprenticeships
    • industry: including industry, industry class and industry group for main, second and last job, and industry made redundant from
    • occupation: including 4-digit Standard Occupational Classification (SOC) for main, second and last job and job made redundant from
    • system variables: including week number when interview took place and number of households at address

    The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.


  13. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/cd10009e-a79f-4de5-a12c-87bb5b499e9f/metadata/FGDC-STD-001-1998.html
    Explore at:
    json(5), gml(5), xls(5), geojson(5), kml(5), zip(1), csv(5), shp(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2017
    Area covered
    West Bounding Coordinate -109.05017 East Bounding Coordinate -103.00196 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.33217, New Mexico
    Description

    A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico counties). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. As in the decennial census, strict confidentiality laws protect all information that could be used to identify individuals or households.The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. The primary advantage of using multiyear estimates is the increased statistical reliability of the data for less populated areas and small population subgroups. Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. While each full Data Profile contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by New Mexico county boundaries.

  14. N

    Lebanon, KS Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Lebanon, KS Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Lebanon from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/lebanon-ks-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Lebanon, Kansas
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Lebanon population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Lebanon across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Lebanon was 182, a 0.55% increase year-by-year from 2022. Previously, in 2022, Lebanon population was 181, a decline of 0% compared to a population of 181 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Lebanon decreased by 120. In this period, the peak population was 302 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Lebanon is shown in this column.
    • Year on Year Change: This column displays the change in Lebanon population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Lebanon Population by Year. You can refer the same here

  15. Namibia Population and Housing Census 2011 - Namibia

    • microdata.nsanamibia.com
    Updated Sep 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Namibia Statistics Agency (2024). Namibia Population and Housing Census 2011 - Namibia [Dataset]. https://microdata.nsanamibia.com/index.php/catalog/9
    Explore at:
    Dataset updated
    Sep 30, 2024
    Dataset authored and provided by
    Namibia Statistics Agencyhttps://nsa.org.na/
    Time period covered
    2011
    Area covered
    Namibia
    Description

    Abstract

    The 2011 Population and Housing Census is the third national Census to be conducted in Namibia after independence. The first was conducted 1991 followed by the 2001 Census. Namibia is therefore one of the countries in sub-Saharan Africa that has participated in the 2010 Round of Censuses and followed the international best practice of conducting decennial Censuses, each of which attempts to count and enumerate every person and household in a country every ten years. Surveys, by contrast, collect data from samples of people and/or households.

    Censuses provide reliable and critical data on the socio-economic and demographic status of any country. In Namibia, Census data has provided crucial information for development planning and programme implementation. Specifically, the information has assisted in setting benchmarks, formulating policy and the evaluation and monitoring of national development programmes including NDP4, Vision 2030 and several sector programmes. The information has also been used to update the national sampling frame which is used to select samples for household-based surveys, including labour force surveys, demographic and health surveys, household income and expenditure surveys. In addition, Census information will be used to guide the demarcation of Namibia's administrative boundaries where necessary.

    At the international level, Census information has been used extensively in monitoring progress towards Namibia's achievement of international targets, particularly the Millennium Development Goals (MDGs).

    The latest and most comprehensive Census was conducted in August 2011. Preparations for the Census started in the 2007/2008 financial year under the auspices of the then Central Bureau of Statistics (CBS) which was later transformed into the Namibia Statistics Agency (NSA). The NSA was established under the Statistics Act No. 9 of 2011, with the legal mandate and authority to conduct population Censuses every 10 years. The Census was implemented in three broad phases; pre-enumeration, enumeration and post enumeration.

    During the first pre-enumeration phase, activities accomplished including the preparation of a project document, establishing Census management and technical committees, and establishing the Census cartography unit which demarcated the Enumeration Areas (EAs). Other activities included the development of Census instruments and tools, such as the questionnaires, manuals and field control forms.

    Field staff were recruited, trained and deployed during the initial stages of the enumeration phase. The actual enumeration exercise was undertaken over a period of about three weeks from 28 August to 15 September 2011, while 28 August 2011 was marked as the reference period or 'Census Day'.

    Great efforts were made to check and ensure that the Census data was of high quality to enhance its credibility and increase its usage. Various quality controls were implemented to ensure relevance, timeliness, accuracy, coherence and proper data interpretation. Other activities undertaken to enhance quality included the demarcation of the country into small enumeration areas to ensure comprehensive coverage; the development of structured Census questionnaires after consultat.The post-enumeration phase started with the sending of completed questionnaires to Head Office and the preparation of summaries for the preliminary report, which was published in April 2012. Processing of the Census data began with manual editing and coding, which focused on the household identification section and un-coded parts of the questionnaire. This was followed by the capturing of data through scanning. Finally, the data were verified and errors corrected where necessary. This took longer than planned due to inadequate technical skills.

    Geographic coverage

    National coverage

    Analysis unit

    Households and persons

    Universe

    The sampling universe is defined as all households (private and institutions) from 2011 Census dataset.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    Sample Design

    The stratified random sample was applied on the constituency and urban/rural variables of households list from Namibia 2011 Population and Housing Census for the Public Use Microdata Sample (PUMS) file. The sampling universe is defined as all households (private and institutions) from 2011 Census dataset. Since urban and rural are very important factor in the Namibia situation, it was then decided to take the stratum at the constituency and urban/rural levels. Some constituencies have very lower households in the urban or rural, the office therefore decided for a threshold (low boundary) for sampling within stratum. Based on data analysis, the threshold for stratum of PUMS file is 250 households. Thus, constituency and urban/rural areas with less than 250 households in total were included in the PUMS file. Otherwise, a simple random sampling (SRS) at a 20% sample rate was applied for each stratum. The sampled households include 93,674 housing units and 418,362 people.

    Sample Selection

    The PUMS sample is selected from households. The PUMS sample of persons in households is selected by keeping all persons in PUMS households. Sample selection process is performed using Census and Survey Processing System (CSPro).

    The sample selection program first identifies the 7 census strata with less than 250 households and the households (private and institutions) with more than 50 people. The households in these areas and with this large size are all included in the sample. For the other households, the program randomly generates a number n from 0 to 4. Out of every 5 households, the program selects the nth household to export to the PUMS data file, creating a 20 percent sample of households. Private households and institutions are equally sampled in the PUMS data file.

    Note: The 7 census strata with less than 250 households are: Arandis Constituency Rural, Rehoboth East Urban Constituency Rural, Walvis Bay Rural Constituency Rural, Mpungu Constituency Urban, Etayi Constituency Urban, Kalahari Constituency Urban, and Ondobe Constituency Urban.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The following questionnaire instruments were used for the Namibia 2011 Population and and Housing Census:

    Form A (Long Form): For conventional households and residential institutions

    Form B1 (Short Form): For special population groups such as persons in transit (travellers), police cells, homeless and off-shore populations

    Form B2 (Short Form): For hotels/guesthouses

    Form B3 (Short Form): For foreign missions/diplomatic corps

    Cleaning operations

    Data editing took place at a number of stages throughout the processing, including: a) During data collection in the field b) Manual editing and coding in the office c) During data entry (Primary validation/editing) Structure checking and completeness using Structured Query Language (SQL) program d) Secondary editing: i. Imputations of variables ii. Structural checking in Census and Survey Processing System (CSPro) program

    Sampling error estimates

    Sampling Error The standard errors of survey estimates are needed to evaluate the precision of the survey estimation. The statistical software package such as SPSS or SAS can accurately estimate the mean and variance of estimates from the survey. SPSS or SAS software package makes use of the Taylor series approach in computing the variance.

    Data appraisal

    Data quality Great efforts were made to check and ensure that the Census data was of high quality to enhance its credibility and increase its usage. Various quality controls were implemented to ensure relevance, timeliness, accuracy, coherence and proper data interpretation. Other activities undertaken to enhance quality included the demarcation of the country into small enumeration areas to ensure comprehensive coverage; the development of structured Census questionnaires after consultation with government ministries, university expertise and international partners; the preparation of detailed supervisors' and enumerators' instruction manuals to guide field staff during enumeration; the undertaking of comprehensive publicity and advocacy programmes to ensure full Government support and cooperation from the general public; the testing of questionnaires and other procedures; the provision of adequate training and undertaking of intensive supervision using four supervisory layers; the editing of questionnaires at field level; establishing proper mechanisms which ensured that all completed questionnaires were properly accounted for; ensuring intensive verification, validating all information and error corrections; and developing capacity in data processing with support from the international community.

  16. U.S. population data for human identification markers

    • catalog.data.gov
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2023). U.S. population data for human identification markers [Dataset]. https://catalog.data.gov/dataset/u-s-population-data-for-human-identification-markers
    Explore at:
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Area covered
    United States
    Description

    The primary data consist of allele or haplotype frequencies for N=1036 anonymized U.S. population samples. Additional files are supplements to the associated publications. Any changes to spreadsheets are listed in the "Change Log" tab within each spreadsheet. DOI numbers for associated publications are listed below, under "References".

  17. f

    Data from: Two Sample Test for Covariance Matrices in Ultra-High Dimension

    • tandf.figshare.com
    txt
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiucai Ding; Yichen Hu; Zhenggang Wang (2024). Two Sample Test for Covariance Matrices in Ultra-High Dimension [Dataset]. http://doi.org/10.6084/m9.figshare.27609570.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset provided by
    Taylor & Francis
    Authors
    Xiucai Ding; Yichen Hu; Zhenggang Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this article, we propose a new test for testing the equality of two population covariance matrices in the ultra-high dimensional setting that the dimension is much larger than the sizes of both of the two samples. Our proposed methodology relies on a data splitting procedure and a comparison of a set of well selected eigenvalues of the sample covariance matrices on the split datasets. Compared to the existing methods, our methodology is adaptive in the sense that (i). it does not require specific assumption (e.g., comparable or balancing, etc.) on the sizes of two samples; (ii). it does not need quantitative or structural assumptions of the population covariance matrices; (iii). it does not need the parametric distributions or the detailed knowledge of the moments of the two populations. Theoretically, we establish the asymptotic distributions of the statistics used in our method and conduct the power analysis. We justify that our method is powerful under weak alternatives. We conduct extensive numerical simulations and show that our method significantly outperforms the existing ones both in terms of size and power. Analysis of two real datasets is also carried out to demonstrate the usefulness and superior performance of our proposed methodology. An R package UHDtst is developed for easy implementation of our proposed methodology. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

  18. D

    Data from: Dimensionality and Validation of the Highly Sensitive Person...

    • dataverse.nl
    docx, zip
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veronique de Gucht; Veronique de Gucht; Tom Wilderjans; Tom Wilderjans; Franshelis Garcia; Franshelis Garcia; Stan Maes; Stan Maes (2024). Dimensionality and Validation of the Highly Sensitive Person Scale (HSPS) in a Dutch General Population Sample and Two Clinical Samples [Dataset]. http://doi.org/10.34894/PXHGBI
    Explore at:
    zip(762266), zip(8042), zip(2563406), zip(789595), docx(18664), zip(114559)Available download formats
    Dataset updated
    Aug 20, 2024
    Dataset provided by
    DataverseNL
    Authors
    Veronique de Gucht; Veronique de Gucht; Tom Wilderjans; Tom Wilderjans; Franshelis Garcia; Franshelis Garcia; Stan Maes; Stan Maes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data included in the publication package pertain to the validation of an existing English questionnaire into Dutch. The validation was conducted both in a sample of the general population and in two clinical samples (fatigue; pain). The publication package contains both the data and the syntax that form the basis of the validation article.

  19. Z

    Model Zoo: A Dataset of Diverse Populations of Neural Network Models - MNIST...

    • data.niaid.nih.gov
    Updated Jun 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giró-i-Nieto, Xavier (2022). Model Zoo: A Dataset of Diverse Populations of Neural Network Models - MNIST [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6632086
    Explore at:
    Dataset updated
    Jun 13, 2022
    Dataset provided by
    Knyazev, Boris
    Giró-i-Nieto, Xavier
    Schürholt, Konstantin
    Taskiran, Diyar
    Borth, Damian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 24 model zoos with varying hyperparameter combinations are generated and includes 47’360 unique neural network models resulting in over 2’415’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.

    Dataset

    This dataset is part of a larger collection of model zoos and contains the zoos trained on the labelled samples from MNIST. All zoos with extensive information and code can be found at www.modelzoos.cc.

    This repository contains two types of files: the raw model zoos as collections of models (file names beginning with "mnist_"), as well as preprocessed model zoos wrapped in a custom pytorch dataset class (filenames beginning with "dataset"). Zoos are trained in three configurations varying the seed only (seed), varying hyperparameters with fixed seeds (hyp_fix) or varying hyperparameters with random seeds (hyp_rand). The index_dict.json files contain information on how to read the vectorized models.

    For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.

  20. g

    Census of Population and Housing, 1980 [United States]: Public Use Microdata...

    • search.gesis.org
    Updated Feb 1, 2001
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Commerce. Bureau of the Census (2001). Census of Population and Housing, 1980 [United States]: Public Use Microdata Sample (A Sample): 5-Percent Sample - Version 2 [Dataset]. http://doi.org/10.3886/ICPSR08101.v2
    Explore at:
    Dataset updated
    Feb 1, 2001
    Dataset provided by
    ICPSR - Interuniversity Consortium for Political and Social Research
    GESIS search
    Authors
    United States Department of Commerce. Bureau of the Census
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442616https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de442616

    Area covered
    United States
    Description

    Abstract (en): The Public Use Microdata Samples (PUMS) contain person- and household-level information from the "long-form" questionnaires distributed to a sample of the population enumerated in the 1980 Census. This data collection, containing 5-percent data, identifies every state, county groups, and most individual counties with 100,000 or more inhabitants (350 in all). In many cases, individual cities or groups of places with 100,000 or more inhabitants are also identified. Household-level variables include housing tenure, year structure was built, number and types of rooms in dwelling, plumbing facilities, heating equipment, taxes and mortgage costs, number of children, and household and family income. The person record contains demographic items such as sex, age, marital status, race, Spanish origin, income, occupation, transportation to work, and education. All persons and housing units in the United States and Puerto Rico. For this data collection, the full 1980 Census sample that received the "long-form" questionnaire (19.4 percent of all households) was sampled again through a stratified systematic selection procedure with probability proportional to a measure of size. This 5-percent sample, i.e., 5 households for every 100 households in the nation, includes over one-fourth of the households that received the long-form questionnaire. 2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.1997-08-25 Part 72, Puerto Rico data, has been added to the collection, as well as supplemental documentation for Puerto Rico in the form of a separate PDF file. The household and person records in each hierarchical data file have logical record lengths of 193 characters, but the number of records varies with each file.The record layout for Part 72, Puerto Rico, is different from the state datasets. Refer to the supplemental documentation for this part.The codebook is available in hardcopy form only, while the Puerto Rico supplemental documentation is provided as a Portable Document Format (PDF) file.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2024). Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Excel township from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/excel-township-mn-population-by-year/

Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Excel township from 2000 to 2023 // 2024 Edition

Explore at:
csv, jsonAvailable download formats
Dataset updated
Jul 30, 2024
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Excel Township, Minnesota
Variables measured
Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
Measurement technique
The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

Key observations

In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

Content

When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

Data Coverage:

  • From 2000 to 2023

Variables / Data Columns

  • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
  • Population: The population for the specific year for the Excel township is shown in this column.
  • Year on Year Change: This column displays the change in Excel township population for each year compared to the previous year.
  • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu