The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.
The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire
Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe
Basic units of analysis that the study investigates include: individuals and groups
Sample survey data [ssd]
A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.
The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.
Sample Universe
The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.
What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.
Sample Design
The sample design is a clustered, stratified, multi-stage, area probability sample.
To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.
In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:
The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages
A first-stage to stratify and randomly select primary sampling units;
A second-stage to randomly select sampling start-points;
A third stage to randomly choose households;
A final-stage involving the random selection of individual respondents
We shall deal with each of these stages in turn.
STAGE ONE: Selection of Primary Sampling Units (PSUs)
The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.
We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.
Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.
Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.
Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.
Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.
The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.
These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.
The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will
The 2011 Population and Housing Census is the third national Census to be conducted in Namibia after independence. The first was conducted 1991 followed by the 2001 Census. Namibia is therefore one of the countries in sub-Saharan Africa that has participated in the 2010 Round of Censuses and followed the international best practice of conducting decennial Censuses, each of which attempts to count and enumerate every person and household in a country every ten years. Surveys, by contrast, collect data from samples of people and/or households.
Censuses provide reliable and critical data on the socio-economic and demographic status of any country. In Namibia, Census data has provided crucial information for development planning and programme implementation. Specifically, the information has assisted in setting benchmarks, formulating policy and the evaluation and monitoring of national development programmes including NDP4, Vision 2030 and several sector programmes. The information has also been used to update the national sampling frame which is used to select samples for household-based surveys, including labour force surveys, demographic and health surveys, household income and expenditure surveys. In addition, Census information will be used to guide the demarcation of Namibia's administrative boundaries where necessary.
At the international level, Census information has been used extensively in monitoring progress towards Namibia's achievement of international targets, particularly the Millennium Development Goals (MDGs).
The latest and most comprehensive Census was conducted in August 2011. Preparations for the Census started in the 2007/2008 financial year under the auspices of the then Central Bureau of Statistics (CBS) which was later transformed into the Namibia Statistics Agency (NSA). The NSA was established under the Statistics Act No. 9 of 2011, with the legal mandate and authority to conduct population Censuses every 10 years. The Census was implemented in three broad phases; pre-enumeration, enumeration and post enumeration.
During the first pre-enumeration phase, activities accomplished including the preparation of a project document, establishing Census management and technical committees, and establishing the Census cartography unit which demarcated the Enumeration Areas (EAs). Other activities included the development of Census instruments and tools, such as the questionnaires, manuals and field control forms.
Field staff were recruited, trained and deployed during the initial stages of the enumeration phase. The actual enumeration exercise was undertaken over a period of about three weeks from 28 August to 15 September 2011, while 28 August 2011 was marked as the reference period or 'Census Day'.
Great efforts were made to check and ensure that the Census data was of high quality to enhance its credibility and increase its usage. Various quality controls were implemented to ensure relevance, timeliness, accuracy, coherence and proper data interpretation. Other activities undertaken to enhance quality included the demarcation of the country into small enumeration areas to ensure comprehensive coverage; the development of structured Census questionnaires after consultat.The post-enumeration phase started with the sending of completed questionnaires to Head Office and the preparation of summaries for the preliminary report, which was published in April 2012. Processing of the Census data began with manual editing and coding, which focused on the household identification section and un-coded parts of the questionnaire. This was followed by the capturing of data through scanning. Finally, the data were verified and errors corrected where necessary. This took longer than planned due to inadequate technical skills.
National coverage
Households and persons
The sampling universe is defined as all households (private and institutions) from 2011 Census dataset.
Census/enumeration data [cen]
Sample Design
The stratified random sample was applied on the constituency and urban/rural variables of households list from Namibia 2011 Population and Housing Census for the Public Use Microdata Sample (PUMS) file. The sampling universe is defined as all households (private and institutions) from 2011 Census dataset. Since urban and rural are very important factor in the Namibia situation, it was then decided to take the stratum at the constituency and urban/rural levels. Some constituencies have very lower households in the urban or rural, the office therefore decided for a threshold (low boundary) for sampling within stratum. Based on data analysis, the threshold for stratum of PUMS file is 250 households. Thus, constituency and urban/rural areas with less than 250 households in total were included in the PUMS file. Otherwise, a simple random sampling (SRS) at a 20% sample rate was applied for each stratum. The sampled households include 93,674 housing units and 418,362 people.
Sample Selection
The PUMS sample is selected from households. The PUMS sample of persons in households is selected by keeping all persons in PUMS households. Sample selection process is performed using Census and Survey Processing System (CSPro).
The sample selection program first identifies the 7 census strata with less than 250 households and the households (private and institutions) with more than 50 people. The households in these areas and with this large size are all included in the sample. For the other households, the program randomly generates a number n from 0 to 4. Out of every 5 households, the program selects the nth household to export to the PUMS data file, creating a 20 percent sample of households. Private households and institutions are equally sampled in the PUMS data file.
Note: The 7 census strata with less than 250 households are: Arandis Constituency Rural, Rehoboth East Urban Constituency Rural, Walvis Bay Rural Constituency Rural, Mpungu Constituency Urban, Etayi Constituency Urban, Kalahari Constituency Urban, and Ondobe Constituency Urban.
Face-to-face [f2f]
The following questionnaire instruments were used for the Namibia 2011 Population and and Housing Census:
Form A (Long Form): For conventional households and residential institutions
Form B1 (Short Form): For special population groups such as persons in transit (travellers), police cells, homeless and off-shore populations
Form B2 (Short Form): For hotels/guesthouses
Form B3 (Short Form): For foreign missions/diplomatic corps
Data editing took place at a number of stages throughout the processing, including: a) During data collection in the field b) Manual editing and coding in the office c) During data entry (Primary validation/editing) Structure checking and completeness using Structured Query Language (SQL) program d) Secondary editing: i. Imputations of variables ii. Structural checking in Census and Survey Processing System (CSPro) program
Sampling Error The standard errors of survey estimates are needed to evaluate the precision of the survey estimation. The statistical software package such as SPSS or SAS can accurately estimate the mean and variance of estimates from the survey. SPSS or SAS software package makes use of the Taylor series approach in computing the variance.
Data quality Great efforts were made to check and ensure that the Census data was of high quality to enhance its credibility and increase its usage. Various quality controls were implemented to ensure relevance, timeliness, accuracy, coherence and proper data interpretation. Other activities undertaken to enhance quality included the demarcation of the country into small enumeration areas to ensure comprehensive coverage; the development of structured Census questionnaires after consultation with government ministries, university expertise and international partners; the preparation of detailed supervisors' and enumerators' instruction manuals to guide field staff during enumeration; the undertaking of comprehensive publicity and advocacy programmes to ensure full Government support and cooperation from the general public; the testing of questionnaires and other procedures; the provision of adequate training and undertaking of intensive supervision using four supervisory layers; the editing of questionnaires at field level; establishing proper mechanisms which ensured that all completed questionnaires were properly accounted for; ensuring intensive verification, validating all information and error corrections; and developing capacity in data processing with support from the international community.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Zoar population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Zoar across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Zoar was 173, a 0% decrease year-by-year from 2022. Previously, in 2022, Zoar population was 173, a decline of 1.14% compared to a population of 175 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Zoar decreased by 17. In this period, the peak population was 190 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Zoar Population by Year. You can refer the same here
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457357https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457357
Abstract (en): The Public Use Microdata Sample (PUMS) 1-Percent Sample contains household and person records for a sample of housing units that received the "long form" of the 1990 Census questionnaire. Data items include the full range of population and housing information collected in the 1990 Census, including 500 occupation categories, age by single years up to 90, and wages in dollars up to $140,000. Each person identified in the sample has an associated household record, containing information on household characteristics such as type of household and family income. All persons and housing units in the United States. A stratified sample, consisting of a subsample of the household units that received the 1990 Census "long-form" questionnaire (approximately 15.9 percent of all housing units). 2006-01-12 All files were removed from dataset 85 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 83 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 82 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.1998-08-28 The following data files were replaced by the Census Bureau: the state files (Parts 1-56), Puerto Rico (Part 72), Geographic Equivalency File (Part 84), and Public Use Microdata Areas (PUMAS) Crossing State Lines (Part 99). These files now incorporate revised group quarters data. Parts 201-256, which were separate revised group quarters files for each state, have been removed from the collection. The data fields affected by the group quarters data revisions were POWSTATE, POWPUMA, MIGSTATE and MIGPUMA. As a result of the revisions, the Maine file (Part 23) gained 763 records and Part 99 lost 763 records. In addition, the following files have been added to the collection: Ancestry Code List, Place of Birth Code List, Industry Code List, Language Code List, Occupation Code List, and Race Code List (Parts 86-91). Also, the codebook is now available as a PDF file. (1) Although all records are 231 characters in length, each file is hierarchical in structure, containing a housing unit record followed by a variable number of person records. Both record types contain approximately 120 variables. Two improvements over the 1980 PUMS files have been incorporated. First, the housing unit serial number is identified on both the housing unit record and on the person record, allowing the file to be processed as a rectangular file. In addition, each person record is assigned an individual weight, allowing users to more closely approximate published reports. Unlike previous years, the 1990 PUMS 1-Percent and 5-Percent Samples have not been released in separate geographic series (known as "A," "B," etc. records). Instead, each sample has its own set of geographies, known as "Public Use Microdata Areas" (PUMAs), established by the Census Bureau with assistance from each State Data Center. The PUMAs in the 1-Percent Sample are based on a distinction between metropolitan and nonmetropolitan areas. Metropolitan areas encompass whole central cities, Primary Metropolitan Statistical Areas (PMSAs), Metropolitan Statistical Areas (MSAs), or groups thereof, except where the city or metropolitan area contains more than 200,000 inhabitants. In that case, the city or metropolitan area is divided into several PUMAs. Nonmetropolitan PUMAs are based on areas or groups of areas outside the central city, PMSA, or MSA. PUMAs in this 1-Percent Sample may cross state lines. (2) The codebook is provided as a Portable Document Format (PDF) file. The PDF file format was developed by Adobe Systems Incorporated and can be accessed using PDF reader software, such as the Adobe Acrobat Reader. Information on how to obtain a copy of the Acrobat Reader is provided through the ICPSR Website on the Internet.
The Armenia Demographic and Health Survey (ADHS) was a nationally representative sample survey designed to provide information on population and health issues in Armenia. The primary goal of the survey was to develop a single integrated set of demographic and health data, the first such data set pertaining to the population of the Republic of Armenia. In addition to integrating measures of reproductive, child, and adult health, another feature of the DHS survey is that the majority of data are presented at the marz level.
The ADHS was conducted by the National Statistical Service and the Ministry of Health of the Republic of Armenia during October through December 2000. ORC Macro provided technical support for the survey through the MEASURE DHS+ project. MEASURE DHS+ is a worldwide project, sponsored by the USAID, with a mandate to assist countries in obtaining information on key population and health indicators. USAID/Armenia provided funding for the survey. The United Nations Children’s Fund (UNICEF)/Armenia provided support through the donation of equipment.
The ADHS collected national- and regional-level data on fertility and contraceptive use, maternal and child health, adult health, and AIDS and other sexually transmitted diseases. The survey obtained detailed information on these issues from women of reproductive age and, on certain topics, from men as well. Data are presented by marz wherever sample size permits.
The ADHS results are intended to provide the information needed to evaluate existing social programs and to design new strategies for improving the health of and health services for the people of Armenia. The ADHS also contributes to the growing international database on demographic and health-related variables.
National
Sample survey data
The sample was designed to provide estimates of most survey indicators (including fertility, abortion, and contraceptive prevalence) for Yerevan and each of the other ten administrative regions (marzes). The design also called for estimates of infant and child mortality at the national level for Yerevan and other urban areas and rural areas.
The target sample size of 6,500 completed interviews with women age 15-49 was allocated as follows: 1,500 to Yerevan and 500 to each of the ten marzes. Within each marz, the sample was allocated between urban and rural areas in proportion to the population size. This gave a target sample of approximately 2,300 completed interviews for urban areas exclusive of Yerevan and 2,700 completed interviews for the rural sector. Interviews were completed with 6,430 women. Men age 15-54 were interviewed in every third household; this yielded 1,719 completed interviews.
A two-stage sample was used. In the first stage, 260 areas or primary sampling units (PSUs) were selected with probability proportional to population size (PPS) by systematic selection from a list of areas. The list of areas was the 1996 Data Base of Addresses and Households constructed by the National Statistical Service. Because most selected areas were too large to be directly listed, a separate segmentation operation was conducted prior to household listing. Large selected areas were divided into segments of which two segments were included in the sample. A complete listing of households was then carried out in selected segments as well as selected areas that were not segmented.
The listing of households served as the sampling frame for the selection of households in the second stage of sampling. Within each area, households were selected systematically so as to yield an average of 25 completed interviews with eligible women per area. All women 15-49 who stayed in the sampled households on the night before the interview were eligible for the survey. In each segment, a subsample of one-third of all households was selected for the men's component of the survey. In these households, all men 15-54 who stayed in the household on the previous night were eligible for the survey.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face [f2f]
Three questionnaires were used in the ADHS: a Household Questionnaire, a Women’s Questionnaire, and a Men’s Questionnaire. The questionnaires were based on the model survey instruments developed for the MEASURE DHS+ program. The model questionnaires were adapted for use during a series of expert meetings hosted by the Center of Perinatology, Obstetrics, and Gynecology. The questionnaires were developed in English and translated into Armenian and Russian. The questionnaires were pretested in July 2000.
The Household Questionnaire was used to list all usual members of and visitors to a household and to collect information on the physical characteristics of the dwelling unit. The first part of the household questionnaire collected information on the age, sex, residence, educational attainment, and relationship to the household head of each household member or visitor. This information provided basic demographic data for Armenian households. It also was used to identify the women and men who were eligible for the individual interview (i.e., women 15-49 and men 15-54). The second part of the Household Questionnaire consisted of questions on housing characteristics (e.g., the flooring material, the source of water, and the type of toilet facilities) and on ownership of a variety of consumer goods.
The Women’s Questionnaire obtained information on the following topics: - Background characteristics - Pregnancy history - Antenatal, delivery, and postnatal care - Knowledge and use of contraception - Attitudes toward contraception and abortion - Reproductive and adult health - Vaccinations, birth registration, and health of children under age five - Episodes of diarrhea and respiratory illness of children under age five - Breastfeeding and weaning practices - Height and weight of women and children under age five - Hemoglobin measurement of women and children under age five - Marriage and recent sexual activity - Fertility preferences - Knowledge of and attitude toward AIDS and other sexually transmitted infections.
The Men’s Questionnaire focused on the following topics: - Background characteristics - Health - Marriage and recent sexual activity - Attitudes toward and use of condoms - Knowledge of and attitude toward AIDS and other sexually transmitted infections.
After a team had completed interviewing in a cluster, questionnaires were returned promptly to the National Statistical Service in Yerevan for data processing. The office editing staff first checked that questionnaires for all selected households and eligible respondents had been received from the field staff. In addition, a few questions that had not been precoded (e.g., occupation) were coded at this time. Using the ISSA (Integrated System for Survey Analysis) software, a specially trained team of data processing staff entered the questionnaires and edited the resulting data set on microcomputers. The process of office editing and data processing was initiated soon after the beginning of fieldwork and was completed by the end of January 2001.
A total of 6,524 households were selected for the sample, of which 6,150 were occupied at the time of fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. Of the occupied households, 97 percent were successfully interviewed.
In these households, 6,685 women were identified as eligible for the individual interview (i.e., age 15-49). Interviews were completed with 96 percent of them. Of the 1,913 eligible men identified, 90 percent were successfully interviewed. The principal reason for non-response among eligible women and men was the failure to find them at home despite repeated visits to the household. The refusal rate was low.
The overall response rates, the product of the household and the individual response rates, were 94 percent for women and 87 percent for men.
Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2000 Armenia Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this article, we propose a new test for testing the equality of two population covariance matrices in the ultra-high dimensional setting that the dimension is much larger than the sizes of both of the two samples. Our proposed methodology relies on a data splitting procedure and a comparison of a set of well selected eigenvalues of the sample covariance matrices on the split datasets. Compared to the existing methods, our methodology is adaptive in the sense that (i). it does not require specific assumption (e.g., comparable or balancing, etc.) on the sizes of two samples; (ii). it does not need quantitative or structural assumptions of the population covariance matrices; (iii). it does not need the parametric distributions or the detailed knowledge of the moments of the two populations. Theoretically, we establish the asymptotic distributions of the statistics used in our method and conduct the power analysis. We justify that our method is powerful under weak alternatives. We conduct extensive numerical simulations and show that our method significantly outperforms the existing ones both in terms of size and power. Analysis of two real datasets is also carried out to demonstrate the usefulness and superior performance of our proposed methodology. An R package UHDtst is developed for easy implementation of our proposed methodology. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
South Ossetia and Abkhazia were not included for the safety of the interviewers. In addition, very remote mountainous villages or those with less than 100 inhabitants were also excluded. The excluded areas represent approximately 8 percent of the total population.
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample size for Georgia is 1000.
Face-to-face [f2f]
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system. The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
States report information from two reporting populations: (1) The Served Population which is information on all youth receiving at least one independent living services paid or provided by the Chafee Program agency, and (2) Youth completing the NYTD Survey. States survey youth regarding six outcomes: financial self-sufficiency, experience with homelessness, educational attainment, positive connections with adults, high-risk behaviors, and access to health insurance. States collect outcomes information by conducting a survey of youth in foster care on or around their 17th birthday, also referred to as the baseline population. States will track these youth as they age and conduct a new outcome survey on or around the youth's 19th birthday; and again on or around the youth's 21st birthday, also referred to as the follow-up population. States will collect outcomes information on these older youth at ages 19 or 21 regardless of their foster care status or whether they are still receiving independent living services from the State. Depending on the size of the State's foster care youth population, some States may conduct a random sample of the baseline population of the 17-year-olds that participate in the outcomes survey so that they can follow a smaller group of youth as they age. All States will collect and report outcome information on a new baseline population cohort every three years. Units of Response: Current and former youth in foster care Type of Data: Administrative Tribal Data: No Periodicity: Annual Demographic Indicators: Ethnicity;Race;Sex SORN: Not Applicable Data Use Agreement: https://www.ndacan.acf.hhs.gov/datasets/request-dataset.cfm Data Use Agreement Location: https://www.ndacan.acf.hhs.gov/datasets/order_forms/termsofuseagreement.pdf Granularity: Individual Spatial: United States Geocoding: FIPS Code
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
https://www.icpsr.umich.edu/web/ICPSR/studies/37786/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37786/terms
The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who do and do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population (CNP) at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Units (PSUs) and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the CNP at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort.At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the CNP at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the CNP at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort.Please refer to the Public-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Wave 4.5 was a special data collection for youth only who were aged 12 to 17 at the time of the Wave 4.5 interview. Wave 4.5 was the fourth annual follow-up wave for those who were members of the Wave 1 Cohort. For those who were sampled at Wave 4, Wave 4.5 was the first annual follow-up wave.Wave 5.5, conducted in 2020, was a special data collection for Wave 4 Cohort youth and young adults ages 13 to 19 at the time of the Wave 5.5 interview. Also in 2020, a subsample of Wave 4 Cohort adults ages 20 and older were interviewed via the PATH Study Adult Telephone Survey (PATH-ATS).Wave 7.5 was a special collection for Wave 4 and Wave 7 Cohort youth and young adults ages 12 to 22 at the time of the Wave 7.5 interview. For those who were sampled at Wave 7, Wave 7.5 was the first annual follow-up wave. Dataset 1002 (DS1002) contains the data from the Wave 4.5 Youth and Parent Questionnaire. This file contains 1,395 variables and 13,131 cases. Of these cases, 11,378 are continuing youth having completed a prior Youth Interview. The other 1,753 cases are "aged-up youth" having previously been sampled as "shadow youth." Datasets 1112, 1212, and 1222, (DS1112, DS1212, and DS1222) are data files comprising the weight variables for Wave 4.5. The "all-waves" weight file contains weights for participants in the Wave 1 Cohort who completed a Wave 4.5 Youth Interview and completed interviews (if old enough to do so) or verified their information with the study (if not old enough to be interviewed) in Waves 1, 2, 3, and 4. There are two separate files with "single wave" weights: one for the Wave 1 Cohort and one for the Wave 4 Cohort. The "single-wave" weight file for the Wave 1 Cohort contains weights for youth who completed an interview in Wave 1 an
Survey based Harmonized Indicators (SHIP) files are harmonized data files from household surveys that are conducted by countries in Africa. To ensure the quality and transparency of the data, it is critical to document the procedures of compiling consumption aggregation and other indicators so that the results can be duplicated with ease. This process enables consistency and continuity that make temporal and cross-country comparisons consistent and more reliable.
Four harmonized data files are prepared for each survey to generate a set of harmonized variables that have the same variable names. Invariably, in each survey, questions are asked in a slightly different way, which poses challenges on consistent definition of harmonized variables. The harmonized household survey data present the best available variables with harmonized definitions, but not identical variables. The four harmonized data files are
a) Individual level file (Labor force indicators in a separate file): This file has information on basic characteristics of individuals such as age and sex, literacy, education, health, anthropometry and child survival. b) Labor force file: This file has information on labor force including employment/unemployment, earnings, sectors of employment, etc. c) Household level file: This file has information on household expenditure, household head characteristics (age and sex, level of education, employment), housing amenities, assets, and access to infrastructure and services. d) Household Expenditure file: This file has consumption/expenditure aggregates by consumption groups according to Purpose (COICOP) of Household Consumption of the UN.
National
The survey covered all de jure household members (usual residents).
Sample survey data [ssd]
Sampling Frame and Units As in all probability sample surveys, it is important that each sampling unit in the surveyed population has a known, non-zero probability of selection. To achieve this, there has to be an appropriate list, or sampling frame of the primary sampling units (PSUs).The universe defined for the GLSS 5 is the population living within private households in Ghana. The institutional population (such as schools, hospitals etc), which represents a very small percentage in the 2000 Population and Housing Census (PHC), is excluded from the frame for the GLSS 5.
The Ghana Statistical Service (GSS) maintains a complete list of census EAs, together with their respective population and number of households as well as maps, with well defined boundaries, of the EAs. . This information was used as the sampling frame for the GLSS 5. Specifically, the EAs were defined as the primary sampling units (PSUs), while the households within each EA constituted the secondary sampling units (SSUs).
Stratification In order to take advantage of possible gains in precision and reliability of the survey estimates from stratification, the EAs were first stratified into the ten administrative regions. Within each region, the EAs were further sub-divided according to their rural and urban areas of location. The EAs were also classified according to ecological zones and inclusion of Accra (GAMA) so that the survey results could be presented according to the three ecological zones, namely 1) Coastal, 2) Forest, and 3) Northern Savannah, and for Accra.
Sample size and allocation The number and allocation of sample EAs for the GLSS 5 depend on the type of estimates to be obtained from the survey and the corresponding precision required. It was decided to select a total sample of around 8000 households nationwide.
To ensure adequate numbers of complete interviews that will allow for reliable estimates at the various domains of interest, the GLSS 5 sample was designed to ensure that at least 400 households were selected from each region.
A two-stage stratified random sampling design was adopted. Initially, a total sample of 550 EAs was considered at the first stage of sampling, followed by a fixed take of 15 households per EA. The distribution of the selected EAs into the ten regions or strata was based on proportionate allocation using the population.
For example, the number of selected EAs allocated to the Western Region was obtained as: 1924577/18912079*550 = 56
Under this sampling scheme, it was observed that the 400 households minimum requirement per region could be achieved in all the regions but not the Upper West Region. The proportionate allocation formula assigned only 17 EAs out of the 550 EAs nationwide and selecting 15 households per EA would have yielded only 255 households for the region. In order to surmount this problem, two options were considered: retaining the 17 EAs in the Upper West Region and increasing the number of selected households per EA from 15 to about 25, or increasing the number of selected EAs in the region from 17 to 27 and retaining the second stage sample of 15 households per EA.
The second option was adopted in view of the fact that it was more likely to provide smaller sampling errors for the separate domains of analysis. Based on this, the number of EAs in Upper East and the Upper West were adjusted from 27 and 17 to 40 and 34 respectively, bringing the total number of EAs to 580 and the number of households to 8,700.
A complete household listing exercise was carried out between May and June 2005 in all the selected EAs to provide the sampling frame for the second stage selection of households. At the second stage of sampling, a fixed number of 15 households per EA was selected in all the regions. In addition, five households per EA were selected as replacement samples.The overall sample size therefore came to 8,700 households nationwide.
Face-to-face [f2f]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the York population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of York across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of York was 8,180, a 0.32% increase year-by-year from 2022. Previously, in 2022, York population was 8,154, an increase of 0.32% compared to a population of 8,128 in 2021. Over the last 20 plus years, between 2000 and 2023, population of York increased by 73. In this period, the peak population was 8,180 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for York Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system. The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
This layer shows Population. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains
estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
This layer is symbolized to show the point by Population Density and size of the point by Total Population. The size of the symbol represents the total count of housing units. Population Density was calculated based on the total population and area of land fields, which both came from the U.S. Census Bureau. Formula used for Calculating the Pop Density (B01001_001E/GEO_LAND_AREA_SQ_KM). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields"
at the top right. Current Vintage: 2015-2019ACS Table(s): B01001, B09020Data downloaded from: Census Bureau's API for American Community Survey
Date of API call: February 10, 2021National Figures: data.census.gov
The United States Census Bureau's American Community Survey (ACS):
About the SurveyGeography & ACSTechnical Documentation
News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online,
its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when
using this data.Data Note from the
Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate
arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can
be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error
(the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a
discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.
Data Processing Notes:
Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates
(annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or
coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For
state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes
within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no
population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated
margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications
defined by the American Community Survey.Field alias names were created
based on the Table Shells file available from the
American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API
(or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent
counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API,
such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
All of these are rendered in this dataset as null (blank) values.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Jacksonville population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Jacksonville. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,539 (51.45% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Jacksonville Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system. The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Johnston by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Johnston across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.92% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Johnston Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Yorktown population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Yorktown across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Yorktown was 62, a 1.59% decrease year-by-year from 2022. Previously, in 2022, Yorktown population was 63, a decline of 0% compared to a population of 63 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Yorktown decreased by 21. In this period, the peak population was 89 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Yorktown Population by Year. You can refer the same here
The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.