27 datasets found
  1. a

    2002 to 2010 Election Data with 2011 Wards

    • gis-ltsb.hub.arcgis.com
    Updated Sep 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wisconsin State Legislature (2024). 2002 to 2010 Election Data with 2011 Wards [Dataset]. https://gis-ltsb.hub.arcgis.com/datasets/LTSB::2002-to-2010-election-data-with-2011-wards/about
    Explore at:
    Dataset updated
    Sep 30, 2024
    Dataset provided by
    Wisconsin State Assemblyhttps://legis.wisconsin.gov/assembly
    Authors
    Wisconsin State Legislature
    Area covered
    Description

    Election Data Attribute Field Definitions | Wisconsin Cities, Towns, & Villages Data AttributesWard Data Overview: These municipal wards were created by grouping Census 2010 population collection blocks into municipal wards. This project started with the release of Census 2010 geography and population totals to all 72 Wisconsin counties on March 21, 2011, and were made available via the Legislative Technology Services Bureau (LTSB) GIS website and the WISE-LR web application. The 180 day statutory timeline for local redistricting ended on September 19, 2011. Wisconsin Legislative and Congressional redistricting plans were enacted in 2011 by Wisconsin Act 43 and Act 44. These new districts were created using Census 2010 block geography. Some municipal wards, created before the passing of Act 43 and 44, were required to be split between assembly, senate and congressional district boundaries. 2011 Wisconsin Act 39 allowed communities to divide wards, along census block boundaries, if they were divided by newly enacted boundaries. A number of wards created under Wisconsin Act 39 were named using alpha-numeric labels. An example would be where ward 1 divided by an assembly district would become ward 1A and ward 1B, and in other municipalities the next sequential ward number was used: ward 1 and ward 2. The process of dividing wards under Act 39 ended on April 10, 2012. On April 11, 2012, the United States Eastern District Federal Court ordered Assembly Districts 8 and 9 (both in the City of Milwaukee) be changed to follow the court’s description. On September 19, 2012, LTSB divided the few remaining municipal wards that were split by a 2011 Wisconsin Act 43 or 44 district line.Election Data Overview: Election data that is included in this file was collected by LTSB from the Government Accountability Board (GAB)/Wisconsin Elections Commission (WEC) after each general election. A disaggregation process was performed on this election data based on the municipal ward layer that was available at the time of the election. The ward data that is collected after each decennial census is made up of collections of whole and split census blocks. (Note: Split census blocks occur during local redistricting when municipalities include recently annexed property in their ward submissions to the legislature).Disaggregation of Election Data: Election data is first disaggregated from reporting units to wards, and then to census blocks. Next, the election data is aggregated back up to wards, municipalities, and counties. The disaggregation of election data to census blocks is done based on total population. Detailed Methodology:Data is disaggregated first from reporting unit (i.e. multiple wards) to the ward level proportionate to the population of that ward.The data then is distributed down to the block level, again based on total population.When data is disaggregated to block or ward, we restrain vote totals not to exceed population 18 numbers, unless absolutely required.This methodology results in the following: Election data totals reported to the GAB/WEC at the state, county, municipal and reporting unit level should match the disaggregated election data total at the same levels. Election data totals reported to the GAB at ward level may not match the ward totals in the disaggregated election data file.Some wards may have more election data allocated than voter age population. This will occur if a change to the geography results in more voters than the 2010 historical population limits.Other things of note… We use a static, official ward layer (in this case created in 2011) to disaggregate election data to blocks. Using this ward layer creates some challenges. New wards are created every year due to annexations and incorporations. When these new wards are reported with election data, an issue arises wherein election data is being reported for wards that do not exist in our official ward layer. For example, if "Cityville" has four wards in the official ward layer, the election data may be reported for five wards, including a new ward from an annexation. There are two different scenarios and courses of action to these issues: When a single new ward is present in the election data but there is no ward geometry present in the official ward layer, the votes attributed to this new ward are distributed to all the other wards in the municipality based on population percentage. Distributing based on population percentage means that the proportion of the population of the municipality will receive that same proportion of votes from the new ward. In the example of Cityville explained above, the fifth ward may have five votes reported, but since there is no corresponding fifth ward in the official layer, these five votes will be assigned to each of the other wards in Cityville according the percentage of population.Another case is when a new ward is reported, but its votes are part of reporting unit. In this case, the votes for the new ward are assigned to the other wards in the reporting unit by population percentage; and not to wards in the municipality as a whole. For example, Cityville’s ward five was given as a reporting unit together with wards 1, 4, and 5. In this case, the votes in ward five are assigned to wards one and four according to population percentage. Outline Ward-by-Ward Election Results: The process of collecting election data and disaggregating to municipal wards occurs after a general election, so disaggregation has occurred with different ward layers and different population totals. We have outlined (to the best of our knowledge) what layer and population totals were used to produce these ward-by-ward election results.Election data disaggregates from GAB/WEC Reporting Unit -> Ward [Variant year outlined below]Elections 1990 – 2000: Wards 1991 (Census 1990 totals used for disaggregation)Elections 2002 – 2010: Wards 2001 (Census 2000 totals used for disaggregation)Elections 2012: Wards 2011 (Census 2010 totals used for disaggregation)Elections 2014 – 2016: Wards spring 2017 (Census 2010 totals used for disaggregation)Blocks 2011 -> Centroid geometry and spatially joined with Wards [All Versions]Each Block has an assignment to each of the ward versions outlined aboveIn the event that a ward exists now in which no block exists (Occurred with spring 2017) due to annexations, a block centroid was created with a population 0, and encoded with the proper Census IDs.Wards [All Versions] disaggregate -> Blocks 2011This yields a block centroid layer that contains all elections from 1990 to 2016Blocks 2011 [with all election data] -> Wards 2011 (then MCD 2011, and County 2011) All election data (including later elections such as 2016) is aggregated to the Wards 2011 assignment of the blocksNotes:Population of municipal wards 1991, 2001 and 2011 used for disaggregation were determined by their respective Census.Population and Election data will be contained within a county boundary. This means that even though municipal and ward boundaries vary greatly between versions of the wards, county boundaries have stayed the same. Therefore, data totals within a county should be the same between 2011 wards and 2018 wards.Election data may be different for the same legislative district, for the same election, due to changes in the wards from 2011 and 2018. This is due to (a) boundary corrections in the data from 2011 to 2018, and (b) annexations, where a block may have been reassigned.

  2. F

    Population Estimate, Total, Hispanic or Latino, Black or African American...

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Population Estimate, Total, Hispanic or Latino, Black or African American Alone (5-year estimate) in Wood County, WI [Dataset]. https://fred.stlouisfed.org/series/B03002014E055141
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Wood County, Africa, Wisconsin, United States
    Description

    Graph and download economic data for Population Estimate, Total, Hispanic or Latino, Black or African American Alone (5-year estimate) in Wood County, WI (B03002014E055141) from 2009 to 2023 about Wood County, WI; African-American; WI; latino; hispanic; estimate; persons; 5-year; population; and USA.

  3. Ratio of population to primary care physicians

    • hub.arcgis.com
    • data-isdh.opendata.arcgis.com
    Updated May 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2021). Ratio of population to primary care physicians [Dataset]. https://hub.arcgis.com/maps/d81350a6c3784c4397301f8980d61873
    Explore at:
    Dataset updated
    May 5, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    Health professionals, especially primary care physicians, are in high demand in many parts of the U.S. Some areas are experiencing health professional shortages. This map shows the ratio of population to primary care physicians in the U.S. Areas in dark red show where there are less primary care physicians per person.The data comes from County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. The layer used in the map comes from ArcGIS Living Atlas of the World, and the full documentation for the layer can be found here.County data are suppressed if, for both years of available data, the population reported by agencies is less than 50% of the population reported in Census or less than 80% of agencies measuring crimes reported data.

  4. Data from: North Temperate Lakes LTER Dane County Census 1990-2000

    • search.dataone.org
    • search-demo.dataone.org
    • +1more
    Updated Nov 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Magnuson; Stephen Carpenter; Emily Stanley (2022). North Temperate Lakes LTER Dane County Census 1990-2000 [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-ntl%2F177%2F18
    Explore at:
    Dataset updated
    Nov 23, 2022
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    John Magnuson; Stephen Carpenter; Emily Stanley
    Time period covered
    Jan 1, 1990
    Area covered
    Variables measured
    FID, AREA, BLK00, Shape, HDEN00, PDEN00, HHDEN00, SHDEN00, WATER00, PERIMETER, and 4 more
    Description

    This data set contains population and housing data from the 1990 census and the 2000 census for Dane County, Wisconsin.

  5. County

    • data.amerigeoss.org
    csv, esri rest +4
    Updated Jun 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). County [Dataset]. https://data.amerigeoss.org/nl/dataset/county1
    Explore at:
    kml, zip, esri rest, html, csv, geojsonAvailable download formats
    Dataset updated
    Jun 22, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description
    The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. This feature layer contains 2020 County Health Rankings data for nation, state, and county levels. The Rankings are compiled using county-level measures from a variety of national and state data sources.

    Some example measures are:
    • adult smoking
    • physical inactivity
    • flu vaccinations
    • child poverty
    • driving alone to work
    To see a full list of variables, as well as their definitions and descriptions, explore the Fields information by clicking the Data tab here in the Item Details. These measures are standardized and combined using scientifically-informed weights.

    "By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."

    Some new features of the 2020 Rankings data compared to previous versions:
    • More race/ethnicity categories, including Asian/Pacific Islander and American Indian/Alaska Native
    • Reliability flags that to flag an estimate as unreliable
    • 5 new variables: math scores, reading scores, juvenile arrests, suicides, and traffic volume

    Data Processing Notes:
    Slight modifications made to the source data are as follows:
    • The string " raw value" was removed from field labels/aliases so that auto-generated legends and pop-ups would only have the measure's name, not "(measure's name) raw value" and strings such as "(%)", "rate", or "per 100,000" were added depending on the type of measure.
    • Percentage and Prevalence fields were multiplied by 100 to make them easier to work with in the map.
    • For demographic variables only, the word "numerator" was removed and the word "population" was added where appropriate.
    • Fields dropped from analytic data file:
    • Analytic data file was then merged with state-specific ranking files so that all county rankings and subrankings are included in this layer.
  6. State

    • atlas-connecteddmv.hub.arcgis.com
    Updated Aug 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). State [Dataset]. https://atlas-connecteddmv.hub.arcgis.com/datasets/esri::state-136
    Explore at:
    Dataset updated
    Aug 29, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. This feature layer contains 2022 County Health Rankings data for nation, state, and county levels. The Rankings are compiled using county-level measures from a variety of national and state data sources. Some example measures are:adult smokingphysical inactivityflu vaccinationschild povertydriving alone to workTo see a full list of variables, as well as their definitions and descriptions, explore the Fields information by clicking the Data tab here in the Item Details. These measures are standardized and combined using scientifically-informed weights."By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."Counties are ranked within their state on both health outcomes and health factors. Counties with a lower (better) health outcomes ranking than health factors ranking may see the health of their county decline in the future, as factors today can result in outcomes later. Conversely, counties with a lower (better) factors ranking than outcomes ranking may see the health of their county improve in the future.Some new variables in the 2022 Rankings data compared to previous versions:COVID-19 age-adjusted mortalitySchool segregationSchool funding adequacyGender pay gapChildcare cost burdenChildcare centersLiving wage (while the Living wage measure was introduced to the CHRR dataset in 2022 from the Living Wage Calculator, it is not available in the Living Atlas dataset and user’s interested in the most up to date living wage data can look that up on the Living Wage Calculator website).Data Processing Notes:Data downloaded April 2022Slight modifications made to the source data are as follows:The string " raw value" was removed from field labels/aliases so that auto-generated legends and pop-ups would only have the measure's name, not "(measure's name) raw value" and strings such as "(%)", "rate", or "per 100,000" were added depending on the type of measure.Percentage and Prevalence fields were multiplied by 100 to make them easier to work with in the map.Ratios were set to null if negative to make them easier to work with in the map.For demographic variables, the word "numerator" was removed and the word "population" was added where appropriate.Fields dropped from analytic data file: yearall fields ending in "_cihigh" and "_cilow"and any variables that are not listed in the sources and years documentation.Analytic data file was then merged with state-specific ranking files so that all county rankings and subrankings are included in this layer.2010 US boundaries were used as the data contain 2010 US census geographies, for a total of 3,142 counties.

  7. Data from: North Temperate Lakes site, station Dane County, WI (FIPS 55025),...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-University Consortium for Political and Social Research; U.S. Bureau of the Census; Ted Gragson; Christopher Boone; Michael R. Haines; Nichole Rosamilia; EcoTrends Project (2015). North Temperate Lakes site, station Dane County, WI (FIPS 55025), study of percent urban population in units of percent on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F11086%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Inter-University Consortium for Political and Social Research; U.S. Bureau of the Census; Ted Gragson; Christopher Boone; Michael R. Haines; Nichole Rosamilia; EcoTrends Project
    Time period covered
    Jan 1, 1840 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from North Temperate Lakes (NTL) contains percent urban population measurements in percent units and were aggregated to a yearly timescale.

  8. Data from: North Temperate Lakes site, station Vilas County, WI (FIPS...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-University Consortium for Political and Social Research; Christopher Boone; Nichole Rosamilia; Ted Gragson; U.S. Bureau of the Census; Michael R. Haines; EcoTrends Project (2015). North Temperate Lakes site, station Vilas County, WI (FIPS 55125), study of population employed in manufacturing (percent of total) in units of percent on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F11124%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Inter-University Consortium for Political and Social Research; Christopher Boone; Nichole Rosamilia; Ted Gragson; U.S. Bureau of the Census; Michael R. Haines; EcoTrends Project
    Time period covered
    Jan 1, 1947 - Jan 1, 1992
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from North Temperate Lakes (NTL) contains population employed in manufacturing (percent of total) measurements in percent units and were aggregated to a yearly timescale.

  9. Data from: North Temperate Lakes site, station Oneida County, WI (FIPS...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-University Consortium for Political and Social Research; Michael R. Haines; Nichole Rosamilia; Christopher Boone; Ted Gragson; U.S. Bureau of the Census; EcoTrends Project (2015). North Temperate Lakes site, station Oneida County, WI (FIPS 55085), study of human population density in units of numberPerKilometerSquared on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F11116%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Inter-University Consortium for Political and Social Research; Michael R. Haines; Nichole Rosamilia; Christopher Boone; Ted Gragson; U.S. Bureau of the Census; EcoTrends Project
    Time period covered
    Jan 1, 1900 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from North Temperate Lakes (NTL) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.

  10. Data from: North Temperate Lakes site, station Columbia County, WI (FIPS...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-University Consortium for Political and Social Research; Christopher Boone; Michael R. Haines; Ted Gragson; U.S. Bureau of the Census; Nichole Rosamilia; EcoTrends Project (2015). North Temperate Lakes site, station Columbia County, WI (FIPS 55021), study of human population (total) in units of number on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F11077%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Inter-University Consortium for Political and Social Research; Christopher Boone; Michael R. Haines; Ted Gragson; U.S. Bureau of the Census; Nichole Rosamilia; EcoTrends Project
    Time period covered
    Jan 1, 1850 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from North Temperate Lakes (NTL) contains human population (total) measurements in number units and were aggregated to a yearly timescale.

  11. U.S. Minneapolis–Saint Paul metro area GDP 2001-2022

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. Minneapolis–Saint Paul metro area GDP 2001-2022 [Dataset]. https://www.statista.com/statistics/183870/gdp-of-the-minneapolis-saint-paul-metro-area/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2022, the Minneapolis–Saint Paul metro area real gross domestic product (GDP) amounted to 277.6 billion U.S. dollars. This is a large increase from the real GDP value in 2001 which came to 176.32 billion U.S. dollars.

    Minneapolis–Saint Paul is the most populous urban area in the state of Minnesota, United States, and is composed of 186 cities and townships. Built around the Mississippi, Minnesota and St. Croix rivers, the area is also nicknamed the Twin Cities for its two largest cities, Minneapolis and Saint Paul, the former the larger and the latter the state capital. It is a classic example of twin cities in geography.

    The area is part of a larger U.S. Census division named Minneapolis-St. Paul-Bloomington, MN-WI, the country's 16th-largest metropolitan area composed of 11 counties in Minnesota and two counties in Wisconsin. This larger area in turn is enveloped in the U.S. Census combined statistical area called Minneapolis-St. Paul-St. Cloud, MN-WI with an estimated population of 3.69 million people in 2022, ranked the 16th most populous in the U.S.

  12. County Health Rankings 2019

    • hub.arcgis.com
    Updated Jun 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). County Health Rankings 2019 [Dataset]. https://hub.arcgis.com/maps/4dc9f89d893b40cf85e4fd59e5a444f0
    Explore at:
    Dataset updated
    Jun 14, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. The Rankings are compiled using county-level measures from a variety of national and state data sources. These measures are standardized and combined using scientifically-informed weights. This year, secure and affordable housing is the focus of the County Health Rankings Key Findings Report for 2019. "By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."This feature service contains 2019 County Health Rankings data for nation, state, and county levels. To see a full list of variables, as well as their definitions and descriptions, explore the Fields information by clicking the Data tab here in the Item Details. We have also created two additional layer views (Outcomes Layer View & Factors Layer View) in which only attribute fields used in those rankings are turned on as visible in the attribute table. Read more about hosted feature layer views. Data Processing Notes:Slight modifications made to the source data are as follows:The string " raw value" was removed from field labels/aliases so that auto-generated legends and pop-ups would only have the measure's name, not "(measure's name) raw value" and strings such as "(%)", "rate", or "(per 100,000 population)" were added depending on the type of measure.Percentage and Prevalence fields were multiplied by 100 to make them easier to work with in the map.For demographic variables only, the word "numerator" was removed and the word "population" was added where appropriate.Fields dropped from analytic data file: yearall fields ending in "_cihigh" and "_cilow"and any variables that are not listed in the sources and years documentation.Analytic data file was then merged with state-specific ranking files so that all county rankings and subrankings are included in this layer.

  13. a

    WI Legislative Redistricting Wards, 2011 (LTSB)

    • data-ltsb.opendata.arcgis.com
    Updated Oct 3, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wisconsin State Legislature (2016). WI Legislative Redistricting Wards, 2011 (LTSB) [Dataset]. https://data-ltsb.opendata.arcgis.com/datasets/0792c5d275e2466e93f551498b3d646c
    Explore at:
    Dataset updated
    Oct 3, 2016
    Dataset provided by
    Wisconsin State Assemblyhttps://legis.wisconsin.gov/assembly
    Authors
    Wisconsin State Legislature
    Area covered
    Description

    These municipal wards were created by grouping Census 2010 population collection blocks into municipal wards. This project started with the release of Census 2010 geography and population totals to all 72 Wisconsin counties on March 21, 2011. Census Geography and population totals to be used for local redistricting were made available on the Wisconsin Shape Editor for Local Redistricting (WISE-LR) website and the WISE-LR web application. The 180 day statutory timeline for local redistricting to occur in Wisconsin ended on September 19, 2011. Wisconsin Legislative and congressional redistricting plans were enacted in the fall of 2011. The 2011 Wisconsin Act 43 and Act 44 created new Assembly, Senate and Congressional lines for the state. These new districts were created using Census 2010 block geography. Some municipal wards were enacted that were created before Act 43 and 44, which created municipal wards in some communities to be split between Assembly, Senate and Congressional districts. The 2011 Wisconsin Act 39 allowed communities to divide affected wards along census blocks. Newly formed wards created under Wisconsin Act 39 would need to be named using alpha-numeric labels (e.g., Ward 1 divided by an Assembly district would become Ward 1A and Ward 1B, or the next sequential ward number would have to be used: Ward 1 and Ward 2). The process of dividing wards under Act 39 ended on April 10, 2012. This link provides more information on Act 39: http://legis.wisconsin.gov/lrb/pubs/Lb/11Lb1.pdfOn April 11, 2012, the United States Eastern District Federal Court ordered Assembly Districts 8 and 9 (both in the City of Milwaukee) to be changed to follow the court’s description.On September 19, 2012, the Legislative Technology Services Bureau (LTSB) divided the few remaining municipal wards that were split by a 2011 Wisconsin Act 43 or 44 district line.

  14. Data from: North Temperate Lakes site, station Oneida County, WI (FIPS...

    • search.dataone.org
    • dataone.org
    • +1more
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nichole Rosamilia; Ted Gragson; U.S. Bureau of the Census; Michael R. Haines; Inter-University Consortium for Political and Social Research; Christopher Boone; EcoTrends Project (2015). North Temperate Lakes site, station Oneida County, WI (FIPS 55085), study of population employed in service (percent of total) in units of percent on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F11114%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Nichole Rosamilia; Ted Gragson; U.S. Bureau of the Census; Michael R. Haines; Inter-University Consortium for Political and Social Research; Christopher Boone; EcoTrends Project
    Time period covered
    Jan 1, 1940 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from North Temperate Lakes (NTL) contains population employed in service (percent of total) measurements in percent units and were aggregated to a yearly timescale.

  15. How many females aged 15-19 have given birth?

    • livingatlas-dcdev.opendata.arcgis.com
    Updated May 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2018). How many females aged 15-19 have given birth? [Dataset]. https://livingatlas-dcdev.opendata.arcgis.com/datasets/5842fc4518704c848bea7567de950661
    Explore at:
    Dataset updated
    May 11, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows teen birth rates in the US. This is shown by county, state, and country from the 2022 County Health Rankings. The average is 19 births per 1,000 women aged 15-19.The data comes from the County Health Rankings 2022 layer. The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. "By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."Counties are ranked within their state on both health outcomes and health factors. Counties with a lower (better) health outcomes ranking than health factors ranking may see the health of their county decline in the future, as factors today can result in outcomes later. Conversely, counties with a lower (better) factors ranking than outcomes ranking may see the health of their county improve in the future.

  16. County Health Rankings 2019 - Health Factors

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jun 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). County Health Rankings 2019 - Health Factors [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/esri::county-health-rankings-2019-health-factors
    Explore at:
    Dataset updated
    Jun 20, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. The Rankings are compiled using county-level measures from a variety of national and state data sources. These measures are standardized and combined using scientifically-informed weights. This year, secure and affordable housing is the focus of the County Health Rankings Key Findings Report for 2019. "By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."This feature service contains 2019 County Health Rankings - Health Outcomes data for nation, state, and county levels. This hosted feature layer view was created from the complete 2019 County Health Rankings hosted feature layer, along with an accompanying Health Outcomes view. To see a full list of variables, as well as their definitions and descriptions, explore the Fields information by clicking the Data tab here in the Item Details.Data Processing Notes:Slight modifications made to the source data are as follows:The string " raw value" was removed from field labels/aliases so that auto-generated legends and pop-ups would only have the measure's name, not "(measure's name) raw value" and strings such as "(%)", "rate", or "(per 100,000 population)" were added depending on the type of measure.Percentage and Prevalence fields were multiplied by 100 to make them easier to work with in the map.Fields dropped from analytic data file: yearall fields ending in "_cihigh" and "_cilow"and any variables that are not listed in the sources and years documentation.Analytic data file was then merged with state-specific ranking files so that all county rankings and subrankings are included in this layer.

  17. Predominant Race for Teen Birth in the U.S.

    • gis-for-racialequity.hub.arcgis.com
    Updated May 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2018). Predominant Race for Teen Birth in the U.S. [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/515638d5a34d403f996e0f6da8839dbb
    Explore at:
    Dataset updated
    May 11, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the predominant race of mothers who have given birth between the ages of 15-19. This is shown by county, state, and country from the 2022 County Health Rankings. The data comes from the County Health Rankings 2022 layer. The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. "By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."Counties are ranked within their state on both health outcomes and health factors. Counties with a lower (better) health outcomes ranking than health factors ranking may see the health of their county decline in the future, as factors today can result in outcomes later. Conversely, counties with a lower (better) factors ranking than outcomes ranking may see the health of their county improve in the future.

  18. Access to Mental Health

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Dec 3, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2018). Access to Mental Health [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/UrbanObservatory::access-to-mental-health/about
    Explore at:
    Dataset updated
    Dec 3, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows the access to mental health providers in every county and state in the United States according to the 2024 County Health Rankings & Roadmaps data for counties, states, and the nation. It translates the numbers to explain how many additional mental health providers are needed in each county and state. According to the data, in the United States overall there are 319 people per mental health provider in the U.S. The maps clearly illustrate that access to mental health providers varies widely across the country.The data comes from this County Health Rankings 2024 layer. An updated layer is usually published each year, which allows comparisons from year to year. This map contains layers for 2024 and also for 2022 as a comparison.County Health Rankings & Roadmaps (CHR&R), a program of the University of Wisconsin Population Health Institute with support provided by the Robert Wood Johnson Foundation, draws attention to why there are differences in health within and across communities by measuring the health of nearly all counties in the nation. This map's layers contain 2024 CHR&R data for nation, state, and county levels. The CHR&R Annual Data Release is compiled using county-level measures from a variety of national and state data sources. CHR&R provides a snapshot of the health of nearly every county in the nation. A wide range of factors influence how long and how well we live, including: opportunities for education, income, safe housing and the right to shape policies and practices that impact our lives and futures. Health Outcomes tell us how long people live on average within a community, and how people experience physical and mental health in a community. Health Factors represent the things we can improve to support longer and healthier lives. They are indicators of the future health of our communities.Some example measures are:Life ExpectancyAccess to Exercise OpportunitiesUninsuredFlu VaccinationsChildren in PovertySchool Funding AdequacySevere Housing Cost BurdenBroadband AccessTo see a full list of variables, definitions and descriptions, explore the Fields information by clicking the Data tab here in the Item Details of this layer. For full documentation, visit the Measures page on the CHR&R website. Notable changes in the 2024 CHR&R Annual Data Release:Measures of birth and death now provide more detailed race categories including a separate category for ‘Native Hawaiian or Other Pacific Islander’ and a ‘Two or more races’ category where possible. Find more information on the CHR&R website.Ranks are no longer calculated nor included in the dataset. CHR&R introduced a new graphic to the County Health Snapshots on their website that shows how a county fares relative to other counties in a state and nation. Data Processing:County Health Rankings data and metadata were prepared and formatted for Living Atlas use by the CHR&R team. 2021 U.S. boundaries are used in this dataset for a total of 3,143 counties. Analytic data files can be downloaded from the CHR&R website.

  19. Data from: North Temperate Lakes site, station Iron County, WI (FIPS 55051),...

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 11, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ted Gragson; U.S. Bureau of the Census; Michael R. Haines; Nichole Rosamilia; Inter-University Consortium for Political and Social Research; Christopher Boone; EcoTrends Project (2015). North Temperate Lakes site, station Iron County, WI (FIPS 55051), study of human population (total) in units of number on a yearly timescale [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fecotrends%2F11106%2F2
    Explore at:
    Dataset updated
    Mar 11, 2015
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Ted Gragson; U.S. Bureau of the Census; Michael R. Haines; Nichole Rosamilia; Inter-University Consortium for Political and Social Research; Christopher Boone; EcoTrends Project
    Time period covered
    Jan 1, 1900 - Jan 1, 2000
    Area covered
    Variables measured
    YEAR, S_DEV, S_ERR, ID_OBS, N_TRACE, N_INVALID, N_MISSING, N_EXPECTED, N_OBSERVED, N_ESTIMATED, and 3 more
    Description

    The EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from North Temperate Lakes (NTL) contains human population (total) measurements in number units and were aggregated to a yearly timescale.

  20. High School Graduation Rate in the U.S.

    • atlas-connecteddmv.hub.arcgis.com
    Updated May 2, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2018). High School Graduation Rate in the U.S. [Dataset]. https://atlas-connecteddmv.hub.arcgis.com/maps/11f7fbf1bf864abcae3d13109b413792
    Explore at:
    Dataset updated
    May 2, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This map shows high school graduations within the US by graduation rate. This is shown by county, state, and country from the 2022 County Health Rankings. The national average of students who graduate high school is 86%.The data comes from the County Health Rankings 2022 layer. The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. "By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."Counties are ranked within their state on both health outcomes and health factors. Counties with a lower (better) health outcomes ranking than health factors ranking may see the health of their county decline in the future, as factors today can result in outcomes later. Conversely, counties with a lower (better) factors ranking than outcomes ranking may see the health of their county improve in the future.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Wisconsin State Legislature (2024). 2002 to 2010 Election Data with 2011 Wards [Dataset]. https://gis-ltsb.hub.arcgis.com/datasets/LTSB::2002-to-2010-election-data-with-2011-wards/about

2002 to 2010 Election Data with 2011 Wards

Explore at:
Dataset updated
Sep 30, 2024
Dataset provided by
Wisconsin State Assemblyhttps://legis.wisconsin.gov/assembly
Authors
Wisconsin State Legislature
Area covered
Description

Election Data Attribute Field Definitions | Wisconsin Cities, Towns, & Villages Data AttributesWard Data Overview: These municipal wards were created by grouping Census 2010 population collection blocks into municipal wards. This project started with the release of Census 2010 geography and population totals to all 72 Wisconsin counties on March 21, 2011, and were made available via the Legislative Technology Services Bureau (LTSB) GIS website and the WISE-LR web application. The 180 day statutory timeline for local redistricting ended on September 19, 2011. Wisconsin Legislative and Congressional redistricting plans were enacted in 2011 by Wisconsin Act 43 and Act 44. These new districts were created using Census 2010 block geography. Some municipal wards, created before the passing of Act 43 and 44, were required to be split between assembly, senate and congressional district boundaries. 2011 Wisconsin Act 39 allowed communities to divide wards, along census block boundaries, if they were divided by newly enacted boundaries. A number of wards created under Wisconsin Act 39 were named using alpha-numeric labels. An example would be where ward 1 divided by an assembly district would become ward 1A and ward 1B, and in other municipalities the next sequential ward number was used: ward 1 and ward 2. The process of dividing wards under Act 39 ended on April 10, 2012. On April 11, 2012, the United States Eastern District Federal Court ordered Assembly Districts 8 and 9 (both in the City of Milwaukee) be changed to follow the court’s description. On September 19, 2012, LTSB divided the few remaining municipal wards that were split by a 2011 Wisconsin Act 43 or 44 district line.Election Data Overview: Election data that is included in this file was collected by LTSB from the Government Accountability Board (GAB)/Wisconsin Elections Commission (WEC) after each general election. A disaggregation process was performed on this election data based on the municipal ward layer that was available at the time of the election. The ward data that is collected after each decennial census is made up of collections of whole and split census blocks. (Note: Split census blocks occur during local redistricting when municipalities include recently annexed property in their ward submissions to the legislature).Disaggregation of Election Data: Election data is first disaggregated from reporting units to wards, and then to census blocks. Next, the election data is aggregated back up to wards, municipalities, and counties. The disaggregation of election data to census blocks is done based on total population. Detailed Methodology:Data is disaggregated first from reporting unit (i.e. multiple wards) to the ward level proportionate to the population of that ward.The data then is distributed down to the block level, again based on total population.When data is disaggregated to block or ward, we restrain vote totals not to exceed population 18 numbers, unless absolutely required.This methodology results in the following: Election data totals reported to the GAB/WEC at the state, county, municipal and reporting unit level should match the disaggregated election data total at the same levels. Election data totals reported to the GAB at ward level may not match the ward totals in the disaggregated election data file.Some wards may have more election data allocated than voter age population. This will occur if a change to the geography results in more voters than the 2010 historical population limits.Other things of note… We use a static, official ward layer (in this case created in 2011) to disaggregate election data to blocks. Using this ward layer creates some challenges. New wards are created every year due to annexations and incorporations. When these new wards are reported with election data, an issue arises wherein election data is being reported for wards that do not exist in our official ward layer. For example, if "Cityville" has four wards in the official ward layer, the election data may be reported for five wards, including a new ward from an annexation. There are two different scenarios and courses of action to these issues: When a single new ward is present in the election data but there is no ward geometry present in the official ward layer, the votes attributed to this new ward are distributed to all the other wards in the municipality based on population percentage. Distributing based on population percentage means that the proportion of the population of the municipality will receive that same proportion of votes from the new ward. In the example of Cityville explained above, the fifth ward may have five votes reported, but since there is no corresponding fifth ward in the official layer, these five votes will be assigned to each of the other wards in Cityville according the percentage of population.Another case is when a new ward is reported, but its votes are part of reporting unit. In this case, the votes for the new ward are assigned to the other wards in the reporting unit by population percentage; and not to wards in the municipality as a whole. For example, Cityville’s ward five was given as a reporting unit together with wards 1, 4, and 5. In this case, the votes in ward five are assigned to wards one and four according to population percentage. Outline Ward-by-Ward Election Results: The process of collecting election data and disaggregating to municipal wards occurs after a general election, so disaggregation has occurred with different ward layers and different population totals. We have outlined (to the best of our knowledge) what layer and population totals were used to produce these ward-by-ward election results.Election data disaggregates from GAB/WEC Reporting Unit -> Ward [Variant year outlined below]Elections 1990 – 2000: Wards 1991 (Census 1990 totals used for disaggregation)Elections 2002 – 2010: Wards 2001 (Census 2000 totals used for disaggregation)Elections 2012: Wards 2011 (Census 2010 totals used for disaggregation)Elections 2014 – 2016: Wards spring 2017 (Census 2010 totals used for disaggregation)Blocks 2011 -> Centroid geometry and spatially joined with Wards [All Versions]Each Block has an assignment to each of the ward versions outlined aboveIn the event that a ward exists now in which no block exists (Occurred with spring 2017) due to annexations, a block centroid was created with a population 0, and encoded with the proper Census IDs.Wards [All Versions] disaggregate -> Blocks 2011This yields a block centroid layer that contains all elections from 1990 to 2016Blocks 2011 [with all election data] -> Wards 2011 (then MCD 2011, and County 2011) All election data (including later elections such as 2016) is aggregated to the Wards 2011 assignment of the blocksNotes:Population of municipal wards 1991, 2001 and 2011 used for disaggregation were determined by their respective Census.Population and Election data will be contained within a county boundary. This means that even though municipal and ward boundaries vary greatly between versions of the wards, county boundaries have stayed the same. Therefore, data totals within a county should be the same between 2011 wards and 2018 wards.Election data may be different for the same legislative district, for the same election, due to changes in the wards from 2011 and 2018. This is due to (a) boundary corrections in the data from 2011 to 2018, and (b) annexations, where a block may have been reassigned.

Search
Clear search
Close search
Google apps
Main menu