The Estimating the Size of Populations through a Household Survey (EPSHS), sought to assess the feasibility of the network scale-up and proxy respondent methods for estimating the sizes of key populations at higher risk of HIV infection and to compare the results to other estimates of the population sizes. The study was undertaken based on the assumption that if these methods proved to be feasible with a reasonable amount of data collection for making adjustments, countries would be able to add this module to their standard household survey to produce size estimates for their key populations at higher risk of HIV infection. This would facilitate better programmatic responses for prevention and caring for people living with HIV and would improve the understanding of how HIV is being transmitted in the country.
The specific objectives of the ESPHS were: 1. To assess the feasibility of the network scale-up method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 2. To assess the feasibility of the proxy respondent method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 3. To estimate the population size of MSM, FSW, IDU, and clients of sex workers in Rwanda at a national level; 4. To compare the estimates of the sizes of key populations at higher risk for HIV produced by the network scale-up and proxy respondent methods with estimates produced using other methods; and 5. To collect data to be used in scientific publications comparing the use of the network scale-up method in different national and cultural environments.
National
The Estimating the Size of Populations through a Household Survey (ESPHS) used a two-stage sample design, implemented in a representative sample of 2,125 households selected nationwide in which all women and men age 15 years and above where eligible for an individual interview. The sampling frame used was the preparatory frame for the Rwanda Population and Housing Census (RPHC), which was conducted in 2012; it was provided by the National Institute of Statistics of Rwanda (NISR).
The sampling frame was a complete list of natural villages covering the whole country (14,837 villages). Two strata were defined: the city of Kigali and the rest of the country. One hundred and thirty Primary Sampling Units (PSU) were selected from the sampling frame (35 in Kigali and 95 in the other stratum). To reduce clustering effect, only 20 households were selected per cluster in Kigali and 15 in the other clusters. As a result, 33 percent of the households in the sample were located in Kigali.
The list of households in each cluster was updated upon arrival of the survey team in the cluster. Once the listing had been updated, a number was assigned to each existing household in the cluster. The supervisor then identified the households to be interviewed in the survey by using a table in which the households were randomly pre-selected. This table also provided the list of households pre-selected for each of the two different definitions of what it means "to know" someone.
For further details on sample design and implementation, see Appendix A of the final report.
Face-to-face [f2f]
The Estimating the Size of Populations through a Household Survey (ESPHS) used two types of questionnaires: a household questionnaire and an individual questionnaire. The same individual questionnaire was used to interview both women and men. In addition, two versions of the individual questionnaire were developed, using two different definitions of what it means “to know” someone. Each version of the individual questionnaire was used in half of the selected households.
The processing of the ESPHS data began shortly after the fieldwork commenced. Completed questionnaires were returned periodically from the field to the SPH office in Kigali, where they were entered and checked for consistency by data processing personnel who were specially trained for this task. Data were entered using CSPro, a programme specially developed for use in DHS surveys. All data were entered twice (100 percent verification). The concurrent processing of the data was a distinct advantage for data quality, because the School of Public Health had the opportunity to advise field teams of problems detected during data entry. The data entry and editing phase of the survey was completed in late August 2011.
A total of 2,125 households were selected in the sample, of which 2,120 were actually occupied at the time of the interview. The number of occupied households successfully interviewed was 2,102, yielding a household response rate of 99 percent.
From the households interviewed, 2,629 women were found to be eligible and 2,567 were interviewed, giving a response rate of 98 percent. Interviews with men covered 2,102 of the eligible 2,149 men, yielding a response rate of 98 percent. The response rates do not significantly vary by type of questionnaire or residence.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made to minimize this type of error during the implementation of the Rwanda ESPHS 2011, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ESPHS 2011 is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the ESPHS 2011 sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the ESPHS 2011 is a SAS program. This program uses the Taylor linearization method for variance estimation for survey estimates that are means or proportions.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey report.
The JPFHS is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health. The primary objective of the Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, fertility preferences, as well as maternal and child health and nutrition that can be used by program managers and policy makers to evaluate and improve existing programs. In addition, the JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional or crossnational studies.
The content of the 2002 JPFHS was significantly expanded from the 1997 survey to include additional questions on women’s status, reproductive health, and family planning. In addition, all women age 15-49 and children less than five years of age were tested for anemia.
National
Sample survey data
The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: See detailed description of sample design in APPENDIX B of the survey report.
Face-to-face
The 2002 JPFHS used two questionnaires – namely, the Household Questionnaire and the Individual Questionnaire. Both questionnaires were developed in English and translated into Arabic. The Household Questionnaire was used to list all usual members of the sampled households and to obtain information on each member’s age, sex, educational attainment, relationship to the head of household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. The Household Questionnaire was also used to identify women who are eligible for the individual interview: ever-married women age 15-49. In addition, all women age 15-49 and children under five years living in the household were measured to determine nutritional status and tested for anemia.
The household and women’s questionnaires were based on the DHS Model “A” Questionnaire, which is designed for use in countries with high contraceptive prevalence. Additions and modifications to the model questionnaire were made in order to provide detailed information specific to Jordan, using experience gained from the 1990 and 1997 Jordan Population and Family Health Surveys. For each evermarried woman age 15 to 49, information on the following topics was collected:
In addition, information on births and pregnancies, contraceptive use and discontinuation, and marriage during the five years prior to the survey was collected using a monthly calendar.
Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding of the open-ended questions.
Data entry and verification started after one week of office data processing. The process of data entry, including one hundred percent re-entry, editing and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by the end of October 2002. A data processing specialist from ORC Macro made a trip to Jordan in October and November 2002 to follow up data editing and cleaning and to work on the tabulation of results for the survey preliminary report. The tabulations for the present final report were completed in December 2002.
A total of 7,968 households were selected for the survey from the sampling frame; among those selected households, 7,907 households were found. Of those households, 7,825 (99 percent) were successfully interviewed. In those households, 6,151 eligible women were identified, and complete interviews were obtained with 6,006 of them (98 percent of all eligible women). The overall response rate was 97 percent.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: 1) nonsampling errors and 2) sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2002 JPFHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2002 JPFHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2002 JPFHS sample is the result of a multistage stratified design and, consequently, it was necessary to use more complex formulas. The computer software used to calculate sampling errors for the 2002 JPFHS is the ISSA Sampling Error Module (ISSAS). This module used the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: See detailed
A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
The main objectives of the study were to assess the knowledge and beliefs of high-risk groups about STI and HIV, determine the prevalence of HIV infection and syphilis among these groups and obtain baseline data that will permit comparisons of risk behaviours, HIV infection and syphilis over time.
Six selected states
State, group, individual
The Integrated Biological and Behavioural Surveillance Survey 2007 covered only males and females aged up to 15-49 years among seven sub-populations at risk of HIV in six selected states of Nigeria, namely Female Sex Workers (both brothel- and non-brothel-based), men who have sex with men (MSM), injecting drug users (IDU), members of the armed forces, police, and transport workers (TW).
Sample survey data [ssd]
In order to reach a representative sample of all groups involved in the 2007 IBBSS, a number of different sampling techniques were used depending on the group in question, including simple random sampling (SRS), cluster sampling (probability proportionate to size (PPS) for fixed populations), time-location sampling (TLS) and respondent-driven sampling (RDS). For MSM and IDU, the RDS method was used, while a TLS technique was used to select non-brothel-based FSW and TW. The brothel-based FSW, armed forces, and police were selected using a two-stage cluster sampling technique. The take all (TA) sampling method was used when the desired sample size was not attainable based on the results of target population mapping.
ITLS is a form of cluster sampling that contains both time and location dimensions. TLS provides the opportunity to reach members of a target population who access certain locations at any point in time. The process starts by creating time * location PSU (PSU that have both a time and a location dimensions) from which a random sample is selected. At the second stage all or a sub-sample of randomly selected population members who appear at the site during a designated time interval of fixed length, for example 4 hours, are interviewed. To the extent that all members of a target population access the locations at some point in time, TLS is a probability sampling method because: (i) all population members have a non-zero chance of selection as long as the TLS frame is complete; and (ii) the selection probabilities can be calculated by taking the time dimension as well as the space dimension into account.
RDS is a method that combines "snowball sampling" with a mathematical model that weights the sample to compensate for the fact that the sample was collected in a non-random way. Characterized by long referral chains (to ensure that all members of the target population can be reached) and a statistical theory of the sampling process which controls for bias including the effects of choice of seeds and differences in network size, RDS overcomes the shortcomings of institutional sampling (coverage) and snow-ball type methods (statistical validity). By making chain-referral into a probability sampling method and consequently resolving the dilemma of a choice between coverage and statistical validity, RDS has become the most appropriate method for reaching the hard-to-reach population groups. The RDS process starts with the recruitment of the initial seeds each of whom recruits a maximum of two to three members from their population group.
Cluster samples were chosen randomly based on sampling frames developed through the mapping process. This process was to identify places where potential subjects could be reached and sampled. Field work for the mapping exercise was performed over one week. Due to the limited period some hidden populations may not be adequately represented in sampling frames.
Face-to-face [f2f]
The questionnaire was designed in collaboration with FMOH, SFH, CDC, WHO, UNAIDS and other stakeholders. At both central- and state-level trainings, each question in the questionnaire was reviewed and role-played and possible challenges were identified and addressed. The questionnaire of Integrated Biological and Behavioural Surveillance Survey 2007 was grouped into fifteen sections
Section 0: Identification particularsBackground characteristics Section 1: Background characteristics Section 2: Marriage and partnerships Section 3: Sexual history numbers and types of partners Section 4: Sexual history-regular partners (for those with spouse/live-in sexual partners only; for MSM, female spouse/live-in sexual partners only) Section 5: Sexual history-boy friends/girl friends (for those with boy friends/girl friends sexual partners only; for MSM, female boy friends/girl friends sexual partners only) Section 6: Sexual history-purchasing sex (male only) (for those with commercial sex partners only; for MSM, female commercial sex partners only) Section 7: Sexual history-casual-non regular non-paying sexual partners (for those with casual sexual partners only; for MSM, female casual sexual partners only) Section 8: Selling sex (for female populatios only) Section 9: Social habits (all groups) Section 10: Dru use/needle sharing (all population reporting drug injection in the past 12 months) Section 11: MSM-men who have sex with men (ask all respondents) Section 12: STIs (ask all respondents) Section 13: Knowledge, opinions, and attitudes towards HIV/AIDS (ask all respondents) Section 12: Exposure to interventions
After data entry, the data was cleaned using STATA 10. Frequency counts were carried out to check consistency and assess cleaniness of the database. The data cleaning also included the following:
Searching for ages outside the age range criteria; Cross-checking all corresponding skips to the questionnaire; Reviewing the cluster allocations; Cross-checking the questionnaire completion responses from the interviewers in the database with the records in the supervisors log to ensure they matched; Tallying the supervisors log of blood samples collected to ensure that recorded numbers of samples collected matched the results recorded in the database; and Consistency checks involving cross-checking answers to related questions.
There were 11,175 individuals selected for this study out of whom 0.8% and 8.1% refused to participate in behavioural and biological componenets of the study respectively.
Non-brothel based FSW had the highest refusal rate of 2.7% and 19.4% for behavioural and biological components respectively, followed by brothel-based FSW at 2.2% and 13.1% respectively. Refusal rates for the behavioural component were less than 0.5% for other groups.
For the biological component, refusal rates were 3% for police, 0.8% for the armed forces, 1 .2% for TW, 4.6% for MSM, and 3.3% for IDU.
No sampling error estimate
A template for the questionnaire was designed with pre-programmed consistency checks for cross-checking answers, including skips and eligibility criteria. Laboratory data forms were collected on a periodic basis from the central laboratories and brought to the same centralized location for data entry. At least 25% of the questionnaires entered daily by each data entry clerk had the behaviour and other non-biological data entered, while 100% double-data entry was achieved for the biological data for quality control purposes. The data entry clerks were supervised by three supervisors who reviewed and validated all questionnaires entered.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Advance population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Advance across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Advance was 505, a 0.40% increase year-by-year from 2022. Previously, in 2022, Advance population was 503, a decline of 0.59% compared to a population of 506 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Advance decreased by 54. In this period, the peak population was 598 in the year 2009. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Advance Population by Year. You can refer the same here
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Effective conservation and management of animal populations requires knowledge of abundance and trends. For many species, these quantities are estimated using systematic visual surveys. Additional individual-level data are available for some species. Integrated population modelling (IPM) offers a mechanism for leveraging these datasets into a single estimation framework. IPMs that incorporate both population- and individual-level data have previously been developed for birds, but have rarely been applied to cetaceans. Here, we explore how IPMs can be used to improve the assessment of cetacean populations. We combined three types of data that are typically available for cetaceans of conservation concern: population-level visual survey data, individual-level capture-recapture data, and data on anthropogenic mortality. We used this IPM to estimate the population dynamics of the Cook Inlet population of beluga whales (CIBW; Delphinapterus leucas) as a case study. Our state-space IPM included a population process model and three observational submodels: 1) a group detection model to describe group size estimates from aerial survey data; 2) a capture-recapture model to describe individual photographic capture-recapture data; and 3) a Poisson regression model to describe historical hunting data. The IPM produces biologically plausible estimates of population trajectories consistent with all three datasets. The estimated population growth rate since 2000 is less than expected for a recovering population. The estimated juvenile/adult survival rate is also low compared to other cetacean populations, indicating that low survival may be impeding recovery. This work demonstrates the value of integrating various data sources to assess cetacean populations and serves as an example of how multiple, imperfect datasets can be combined to improve our understanding of a population of interest. The model framework is applicable to other cetacean populations and to other taxa for which similar data types are available.
Methods /Data/CIBW_RSideCapHist_McGuire&Stephens.csv contains a matrix of right side capture histories (1 = captured, 0 = not captured) for each individual (rows) and year (columns). Photographic capture-recapture data were collected by Tamara McGuire. These data are made available here, without restriction, but anyone wishing to use these data is requested to contact tamaracookinletbeluga@gmail.com, who can provide further information on how raw data were processed to provide capture histories.
/Data/CIBW_HuntData_Mahoney&Shelden2000.xlsx contains the minimum documented number of animals killed (MinKilled) for years between 1950 and 1998 as published in Mahoney and Shelden 2000. Entries which are NA indicate that no data were available for that year.
/Data/CIBW_Abundance_HobbsEtAl2015.xlsx contains the total group size estimates from Hobbs et al. 2015.
/Data/CIBW_Abundance_BoydEtAl2019.txt contains an array with dimensions [1:1000, 1:8, 1:11] containing 1000 posterior samples of total group size for up to 8 survey days over 11 years, as described in Boyd et al. 2019.
https://www.icpsr.umich.edu/web/ICPSR/studies/7923/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7923/terms
This data collection consists of modified records from CENSUS OF POPULATION AND HOUSING, 1970 [UNITED STATES]: PUBLIC USE SAMPLES (ICPSR 0018). The original records consisted of 120-character household records and 120-character person records, whereas the new modified records are rectangular (each person record is combined with the corresponding household record) with a length of 188, after the deletion of some items. Additional information was added to the data records, including typical educational requirement for current occupation, occupational prestige score, and group identification code. This version also differs from the original public use census samples in other ways: persons aged 15-75 were included, no majority males were included, but the majority males from CENSUS OF POPULATION AND HOUSING [UNITED STATES], 1970 PUBLIC USE SAMPLE: MODIFIED 1/1000 5% STATE SAMPLES (ICPSR 7922) were included for convenience, 10 percent of the Black population from each file was included, and Mexican Americans (identified by a Spanish surname) from outside the five southwestern states of Arizona, California, Colorado, New Mexico, and Texas were not included in this file. Variables provide information on the housing unit, such as occupancy and vacancy status of house, value of property, commercial use, ratio of rent and property value to family income, availability of plumbing facilities, sewage disposal, complete kitchen facilities, heating facilities, flush toilet, water, television, and telephone. Data are also provided on household characteristics such as household size, family size, and household relationships. Other demographic variables specify age, sex, place of birth, state of residence, Spanish descent, marital status, race, veteran status, income, and ratio of family income to poverty cutoff level. This collection was made available by the National Chicano Research Network of the Institute for Social Research, University of Michigan. See the related collection, CENSUS OF POPULATION AND HOUSING [UNITED STATES], 1970 PUBLIC USE SAMPLE: MODIFIED 1/1000 5% STATE SAMPLES (ICPSR 7922).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population: County data was reported at 502.967 Person th in 2022. This records a decrease from the previous number of 527.827 Person th for 2021. Population: County data is updated yearly, averaging 753.829 Person th from Dec 1982 (Median) to 2022, with 34 observations. The data reached an all-time high of 797,604.783 Person th in 1982 and a record low of 430.197 Person th in 2019. Population: County data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Sample Survey.
These data were compiled here to fit various versions of Bayesian population models and compare their performance, primarily the time required to make inferences using different softwares and versions of code. The humpback chub data were collected by US Geological Survey and US Fish and Wildlife service in the Colorado and Little Colorado Rivers from April 2009 to October 2017. Adult fish were captured using hoop nets and electro-fishing, measured for total length and given individual marks using passive integrated transponders that were scanned when fish were recaptured. The other three datasets were collected by US Forest Service. Owl data for the N-occupancy model was collected between 1990 and 2015. Owl data for the two-species example was collected between 1990 and 2011. Both owl data sets were collected in a ~1000 km2 area in the Roseburg District of the Bureau of Land Management in western Oregon, USA. Owl vocalizations (vocal lures) were used to detect barred owl or spotted owl pairs in 158 survey polygons spread throughout the study area. The avian community occupancy data were collected from 1991 to 1995 across 92 sites in the Chiricahua Mountains of southeastern Arizona, USA. 149 species were detected through repeated point counts in each year.
The 2023 Jordan Population and Family Health Survey (JPFHS) is the eighth Population and Family Health Survey conducted in Jordan, following those conducted in 1990, 1997, 2002, 2007, 2009, 2012, and 2017–18. It was implemented by the Department of Statistics (DoS) at the request of the Ministry of Health (MoH).
The primary objective of the 2023 JPFHS is to provide up-to-date estimates of key demographic and health indicators. Specifically, the 2023 JPFHS: • Collected data at the national level that allowed calculation of key demographic indicators • Explored the direct and indirect factors that determine levels of and trends in fertility and childhood mortality • Measured contraceptive knowledge and practice • Collected data on key aspects of family health, including immunisation coverage among children, prevalence and treatment of diarrhoea and other diseases among children under age 5, and maternity care indicators such as antenatal visits and assistance at delivery • Obtained data on child feeding practices, including breastfeeding, and conducted anthropometric measurements to assess the nutritional status of children under age 5 and women age 15–49 • Conducted haemoglobin testing with eligible children age 6–59 months and women age 15–49 to gather information on the prevalence of anaemia • Collected data on women’s and men’s knowledge and attitudes regarding sexually transmitted infections and HIV/AIDS • Obtained data on women’s experience of emotional, physical, and sexual violence • Gathered data on disability among household members
The information collected through the 2023 JPFHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population. The survey also provides indicators relevant to the Sustainable Development Goals (SDGs) for Jordan.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, men aged 15-59, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling frame used for the 2023 JPFHS was the 2015 Jordan Population and Housing Census (JPHC) frame. The survey was designed to produce representative results for the country as a whole, for urban and rural areas separately, for each of the country’s 12 governorates, and for four nationality domains: the Jordanian population, the Syrian population living in refugee camps, the Syrian population living outside of camps, and the population of other nationalities. Each of the 12 governorates is subdivided into districts, each district into subdistricts, each subdistrict into localities, and each locality into areas and subareas. In addition to these administrative units, during the 2015 JPHC each subarea was divided into convenient area units called census blocks. An electronic file of a complete list of all of the census blocks is available from DoS. The list contains census information on households, populations, geographical locations, and socioeconomic characteristics of each block. Based on this list, census blocks were regrouped to form a general statistical unit of moderate size, called a cluster, which is widely used in various surveys as the primary sampling unit (PSU). The sample clusters for the 2023 JPFHS were selected from the frame of cluster units provided by the DoS.
The sample for the 2023 JPFHS was a stratified sample selected in two stages from the 2015 census frame. Stratification was achieved by separating each governorate into urban and rural areas. In addition, the Syrian refugee camps in Zarqa and Mafraq each formed a special sampling stratum. In total, 26 sampling strata were constructed. Samples were selected independently in each sampling stratum, through a twostage selection process, according to the sample allocation. Before the sample selection, the sampling frame was sorted by district and subdistrict within each sampling stratum. By using a probability proportional to size selection at the first stage of sampling, an implicit stratification and proportional allocation were achieved at each of the lower administrative levels.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Five questionnaires were used for the 2023 JPFHS: (1) the Household Questionnaire, (2) the Woman’s Questionnaire, (3) the Man’s Questionnaire, (4) the Biomarker Questionnaire, and (5) the Fieldworker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Jordan. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. After all questionnaires were finalised in English, they were translated into Arabic.
All electronic data files for the 2023 JPFHS were transferred via SynCloud to the DoS central office in Amman, where they were stored on a password-protected computer. The data processing operation included secondary editing, which required resolution of computer-identified inconsistencies and coding of open-ended questions. Data editing was accomplished using CSPro software. During the duration of fieldwork, tables were generated to check various data quality parameters, and specific feedback was given to the teams to improve performance. Secondary editing and data processing were initiated in July and completed in September 2023.
A total of 20,054 households were selected for the sample, of which 19,809 were occupied. Of the occupied households, 19,475 were successfully interviewed, yielding a response rate of 98%.
In the interviewed households, 13,020 eligible women age 15–49 were identified for individual interviews; interviews were completed with 12,595 women, yielding a response rate of 97%. In the subsample of households selected for the male survey, 6,506 men age 15–59 were identified as eligible for individual interviews and 5,873 were successfully interviewed, yielding a response rate of 90%.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2023 Jordan Population and Family Health Survey (2023 JPFHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2023 JPFHS is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2023 JPFHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed using SAS programs developed by ICF. These programs use the Taylor linearisation method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population: City: Age 15 to 64: Anhui data was reported at 13.705 Person th in 2023. This records an increase from the previous number of 13.631 Person th for 2022. Population: City: Age 15 to 64: Anhui data is updated yearly, averaging 8.738 Person th from Dec 1997 (Median) to 2023, with 27 observations. The data reached an all-time high of 11,787.862 Person th in 2020 and a record low of 3.193 Person th in 2002. Population: City: Age 15 to 64: Anhui data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Sample Survey: By Age and Region: City.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Population Statistics: Sample Survey: Sampling Fraction data was reported at 0.105 % in 2023. This records an increase from the previous number of 0.102 % for 2022. China Population Statistics: Sample Survey: Sampling Fraction data is updated yearly, averaging 0.100 % from Dec 1982 (Median) to 2023, with 37 observations. The data reached an all-time high of 100.000 % in 2020 and a record low of 0.063 % in 1994. China Population Statistics: Sample Survey: Sampling Fraction data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Socio-Demographic – Table CN.GA: Population: Sample Survey: Level of Education.
The study included four separate surveys:
The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.
The LSMS survey of general population of Serbia in 2003 (panel survey)
The survey of Roma from Roma settlements in 2003 These two datasets are published together.
Objectives
LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.
The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).
Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]
Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.
The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).
Sample survey data [ssd]
Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.
The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.
The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.
Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.
Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.
Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.
The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.
Face-to-face [f2f]
In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).
During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.
In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Patterns of genetic variation in human populations across the African continent are still not well studied in comparison with Eurasia and America, despite the high genetic and cultural diversity among African populations. In population and forensic genetic studies a single sample is often used to represent a complete African region. In such a scenario, inappropriate sampling strategies and/or the use of local, isolated populations may bias interpretations and pose questions of representativeness at a macrogeographic-scale. The non-recombining region of the Y-chromosome (NRY) has great potential to reveal the regional representation of a sample due to its powerful phylogeographic information content. An area poorly characterized for Y-chromosomal data is the West-African region along the Bight of Benin, despite its important history in the trans-Atlantic slave trade and its large number of ethnic groups, languages and lifestyles. In this study, Y-chromosomal haplotypes from four Beninese populations were determined and a global meta-analysis with available Y-SNP and Y-STR data from populations along the Bight of Benin and surrounding areas was performed. A thorough methodology was developed allowing comparison of population samples using Y-chromosomal lineage data based on different Y-SNP panels and phylogenies. Geographic proximity turned out to be the best predictor of genetic affinity between populations along the Bight of Benin. Nevertheless, based on Y-chromosomal data from the literature two population samples differed strongly from others from the same or neighbouring areas and are not regionally representative within large-scale studies. Furthermore, the analysis of the HapMap sample YRI of a Yoruban population from South-western Nigeria based on Y-SNPs and Y-STR data showed for the first time its regional representativeness, a result which is important for standard population and forensic genetic applications using the YRI sample. Therefore, the uniquely and powerful geographical information carried by the Y-chromosome makes it an important locus to test the representativeness of a certain sample even in the genomic era, especially in poorly investigated areas like Africa.
This collection contains individual-level and 1-percent national sample data from the 1960 Census of Population and Housing conducted by the Census Bureau. It consists of a representative sample of the records from the 1960 sample questionnaires. The data are stored in 30 separate files, containing in total over two million records, organized by state. Some files contain the sampled records of several states while other files contain all or part of the sample for a single state. There are two types of records stored in the data files: one for households and one for persons. Each household record is followed by a variable number of person records, one for each of the household members. Data items in this collection include the individual responses to the basic social, demographic, and economic questions asked of the population in the 1960 Census of Population and Housing. Data are provided on household characteristics and features such as the number of persons in household, number of rooms and bedrooms, and the availability of hot and cold piped water, flush toilet, bathtub or shower, sewage disposal, and plumbing facilities. Additional information is provided on tenure, gross rent, year the housing structure was built, and value and location of the structure, as well as the presence of air conditioners, radio, telephone, and television in the house, and ownership of an automobile. Other demographic variables provide information on age, sex, marital status, race, place of birth, nationality, education, occupation, employment status, income, and veteran status. The data files were obtained by ICPSR from the Center for Social Analysis, Columbia University. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR07756.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.
This layer shows total population count by sex and age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent and count of the dependent population (ages 65+ and <18). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Infectious diseases can cause steep declines in wildlife populations, leading to changes in genetic diversity that may affect the susceptibility of individuals to infection and the overall resilience of populations to pathogen outbreaks. Here, we examine evidence for a genetic bottleneck in a population of American crows (Corvus brachyrhynchos) before and after the emergence of West Nile virus (WNV). More than 50% of marked birds in this population were lost over the two-year period of the epizootic, representing a 10-fold increase in adult mortality. Using analyses of SNPs and microsatellite markers, we tested for evidence of a genetic bottleneck and compared levels of inbreeding and immigration in the pre- and post-WNV populations. Counter to expectations, genetic diversity (allelic diversity and the number of new alleles) increased after WNV emergence. This was likely due to increases in immigration, as the estimated membership coefficients were lower in the post-WNV population. Simultaneously, however, the frequency of inbreeding appeared to increase: mean inbreeding coefficients were higher among SNP markers, and heterozygosity-heterozygosity correlations were stronger among microsatellite markers, in the post-WNV population. These results indicate that loss of genetic diversity at the population level is not an inevitable consequence of a population decline, particularly in the presence of gene flow. The changes observed in post-WNV crows could have very different implications for their response to future pathogen risks, potentially making the population as a whole more resilient to a changing pathogen community, while increasing the frequency of inbred individuals with elevated susceptibility to disease. Methods Study population and data collection. Crows in the Ithaca, New York, population are cooperative breeders. They live in groups of up to 14 birds, including a socially bonded pair of adults as well as 0-12 auxiliary birds, which are usually offspring from previous broods). Although auxiliaries usually do not contribute offspring to the brood, molecular work in the post-WNV population indicates that auxiliary males occasionally do sire extra-pair offspring with the female breeder, arising both through incest (mothers mating with their adult auxiliary sons) and through matings between non-relatives (e.g., unrelated step-mothers and adult auxiliary males). Genetic samples were collected from crow nestlings from 1990–2011. We collected blood (~150 ul) from the brachial vein of nestlings and banded them with unique combinations of metal bands, color bands, and patagial tags on days 24–30 after hatching. DNA was extracted from samples using DNeasy tissue kits (Qiagen, Valencia, CA) following the manufacturer’s protocol. All fieldwork with American crows was carried out under protocols approved by the Institutional Animal Care and Use Committees of Binghamton University (no. 537-03 and 607-07) and Cornell University (no. 1988–0210). The pre-WNV dataset included samples collected between 1990 and 2002. The 2002 nestlings were sampled prior to WNV emergence, as nestlings fledge the nest between May and July, whereas WNV mortality typically occurs between August and October in this crow population. The post-WNV samples were collected between 2005 and 2011. Samples collected immediately after WNV emergence (2003 and 2004) were not included in the analysis to allow time for the birds to respond to the population loss. We maximized independence of the birds selected for analysis by including only one randomly chosen offspring per brood and no more than two broods per family group in the pre-and post-WNV samples, with each brood per family group separated by the maximum number of years possible within the pre- or post-WNV sampling periods (1990–2002 pre-WNV; 2005–2011 post-WNV; Figure S1). Birds were randomly and independently selected (with replacement) for the SNP and microsatellite analyses; therefore, there was little overlap among individual birds included in these marker sets. Of the 286 individual birds included in this analysis, 22 were common to both marker sets (15 pre-WNV; 7 post-WNV). The 20-year time period of this study may have encompassed 2–4 breeding cohorts (approximately 1–2 pre- and 1–2 post-WNV, with a sharp turn-over immediately after WNV emergence). Crows can produce offspring as early as two years after hatching, but most do not begin breeding independently until at least 3–4 years after hatching. Breeding initiation is limited at least in part by breeding vacancies, which are created by the death of one or both members of an established breeding pair. Such breeding vacancies likely increased in availability after the emergence of WNV. Microsatellite genotyping. A total of 222 crows (n = 113 and 109 crows pre- and post-WNV, respectively) were genotyped at 34 polymorphic microsatellite loci that were optimized for American crows. Alleles were scored using the microsatellite plugin for Geneious 9.1.8. We used GenePop version 4.7 to test for linkage disequilibrium between all pairs of loci, departures from Hardy–Weinberg equilibrium (HWE), and null allele frequency. Locus characteristics (e.g., alleles/ locus, tests of Hardy–Weinberg equilibrium and null allele frequencies) are given in the supplementary materials (Table S1). Departures from HWE expectations were observed at two loci (PnuA3w from the pre-WNV sample and Cb06 from the post-WNV sample) after Bonferroni correction (Table S1); these loci were removed from subsequent analysis. In 561 pairwise comparisons, four pairs of loci appeared to be in linkage disequilibrium (Cb20 and Cb21; Cb14 and CoBr36; CoBr22 and Cb17, and CoBr12 and Cb10), but this linkage was only apparent at both time points (the pre-WNV and post-WNV populations) for Cb20 and Cb21. We removed both Cb20 and Cb21 from the analysis but retained the other loci because apparent linkage at only a single time point was unlikely to be a result of physical linkage. Two additional loci (Cb17 and Cb10) had a high frequency of null alleles (> 0.1) and were removed from the dataset. All subsequent analyses are therefore based on 28 loci. We scored all birds at a minimum of 26 of these 28 loci, and most (>98%) were scored at all loci (mean proportion of loci typed >0.99). Mean allelic diversity at these loci was 11.25 ± 1.17 alleles/locus (range: 3–31 alleles/locus). Double Digest Restriction Associated DNA (ddRAD) sequencing. We performed ddRAD sequencing on 86 randomly selected crows (43 pre-WNV and 43 post-WNV). 100-500 ng of DNA were digested with SbfI-HF (NEB, R3642L) and MspI-HF (NEB, R016S) restriction enzymes. Samples were ligated with a P2-MspI adapter and pooled in groups of 18-20, each with a unique P1 adapter. Pooled index groups were purified using 1.5X volumes of homemade MagNA made with Sera-Mag Magnetic Speed-beads (FisherSci). Fragments 450-600 bp long were selected using BluePippin (Sage Science) by the Cornell University Biotechnology Resource Center (BRC). After size selection, unique index barcodes were added to each index group by performing 11 cycles of PCR with Phusion® DNA polymerase (NEB). Reactions were purified using 0.7X volumes of MagNA beads and pooled in equimolar ratios for sequencing on the Illumina HiSeq 2500 at the BRC, with single end reads (100 bp). The sequencing was performed with an added Illumina PhiX control (15%) due to low 5’ complexity. Pre- and post-WNV samples were library prepared together and sequenced on a single lane to avoid the introduction of a library or lane effect. We used FASTQC v0.11.9 (Babraham Bioinformatics; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to assess read quality. We trimmed reads to 147 bp using fastX_trimmer (FASTX-Toolkit) to exclude low-quality data at the 3’ end of reads. Next, we eliminated reads with Phred scores below 10, then eliminated reads in which 5% or more bases had Phred scores below 20 (fastq_quality_filter). The fastq files were demultiplexed using the process_radtags module in STACKS v2.52 pipeline to create a file with sequences specific to each individual. We first scaffolded the American Crow reference genome (NCBI assembly: ASM69197v1, Accession no: GCA_000691975.1) into putative pseudochromosomes using the synteny-based Chromosemble tool in Satsuma2 (Grabherr et al. 2010) and the Hooded Crow genome (NCBI assembly: ASM73873v5, Accession no: GCA_000738735.5). We aligned sequence reads to the American Crow pseudochromosome assembly using BWA-MEM (Li & Durbin 2009). We called SNPs in ANGSD (Korneliussen et al. 2014) using the GATK model, requiring SNPs to be present in 80% of the individuals (0.95 postcutoff, SNP p-value 1e-6) with a minimum allele frequency of 0.015. We removed bases with quality scores below 20 (-minQ 20), bad reads (-remove_bads), mapping quality below 20 (-minMapQ20), base alignment quality below 1 (-baq), more than two alleles (-skipTriallelic), and heterozygote bias (-hetbias_pval 1e-5), requiring the minimum depth per individual to be at least two and read depth higher than 1,800. These filters resulted in 16,200 SNPs. To reduce differences in missingness between the pre- and post-WNV populations, we excluded loci that had less than 80% called genotypes per population, resulting in 5,151 SNPs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wildlife populations often exhibit unequal catchability between subgroups such as males and females. This heterogeneity of capture probabilities can bias both population size and sex ratio estimates. Several authors have suggested that this problem can be overcome by treating males and females as separate populations and calculating a population estimate for each of them. However, this suggestion has received little testing, and many researchers do not implement it. Therefore, we used two simulations to test the utility of this method. One simulated a closed population, while the other simulated an open population and used the robust design to calculate population sizes. We tested both simulations with multiple levels of heterogeneity, and we used a third simulation to test several methods for detecting heterogeneity of capture probabilities. We found that treating males and females as separate populations produced more accurate population and sex ratio estimates. The benefits of this method were particularly pronounced for sex ratio estimates. When males and females were included as a single population, the sex ratio estimates became inaccurate when even slight heterogeneity was present, but when males and females were treated separately, the estimates were accurate even when large biases were present. Nevertheless, treating males and females separately reduced precision, and this method may not be appropriate when capture and recapture rates are low. None of the methods for detecting heterogeneity were robust, and we do not recommend that researchers rely on them. Rather, we suggest separating populations by sex, age, or other subgroups whenever sample sizes permit.
The Estimating the Size of Populations through a Household Survey (EPSHS), sought to assess the feasibility of the network scale-up and proxy respondent methods for estimating the sizes of key populations at higher risk of HIV infection and to compare the results to other estimates of the population sizes. The study was undertaken based on the assumption that if these methods proved to be feasible with a reasonable amount of data collection for making adjustments, countries would be able to add this module to their standard household survey to produce size estimates for their key populations at higher risk of HIV infection. This would facilitate better programmatic responses for prevention and caring for people living with HIV and would improve the understanding of how HIV is being transmitted in the country.
The specific objectives of the ESPHS were: 1. To assess the feasibility of the network scale-up method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 2. To assess the feasibility of the proxy respondent method for estimating the sizes of key populations at higher risk of HIV infection in a Sub-Saharan African context; 3. To estimate the population size of MSM, FSW, IDU, and clients of sex workers in Rwanda at a national level; 4. To compare the estimates of the sizes of key populations at higher risk for HIV produced by the network scale-up and proxy respondent methods with estimates produced using other methods; and 5. To collect data to be used in scientific publications comparing the use of the network scale-up method in different national and cultural environments.
National
The Estimating the Size of Populations through a Household Survey (ESPHS) used a two-stage sample design, implemented in a representative sample of 2,125 households selected nationwide in which all women and men age 15 years and above where eligible for an individual interview. The sampling frame used was the preparatory frame for the Rwanda Population and Housing Census (RPHC), which was conducted in 2012; it was provided by the National Institute of Statistics of Rwanda (NISR).
The sampling frame was a complete list of natural villages covering the whole country (14,837 villages). Two strata were defined: the city of Kigali and the rest of the country. One hundred and thirty Primary Sampling Units (PSU) were selected from the sampling frame (35 in Kigali and 95 in the other stratum). To reduce clustering effect, only 20 households were selected per cluster in Kigali and 15 in the other clusters. As a result, 33 percent of the households in the sample were located in Kigali.
The list of households in each cluster was updated upon arrival of the survey team in the cluster. Once the listing had been updated, a number was assigned to each existing household in the cluster. The supervisor then identified the households to be interviewed in the survey by using a table in which the households were randomly pre-selected. This table also provided the list of households pre-selected for each of the two different definitions of what it means "to know" someone.
For further details on sample design and implementation, see Appendix A of the final report.
Face-to-face [f2f]
The Estimating the Size of Populations through a Household Survey (ESPHS) used two types of questionnaires: a household questionnaire and an individual questionnaire. The same individual questionnaire was used to interview both women and men. In addition, two versions of the individual questionnaire were developed, using two different definitions of what it means “to know” someone. Each version of the individual questionnaire was used in half of the selected households.
The processing of the ESPHS data began shortly after the fieldwork commenced. Completed questionnaires were returned periodically from the field to the SPH office in Kigali, where they were entered and checked for consistency by data processing personnel who were specially trained for this task. Data were entered using CSPro, a programme specially developed for use in DHS surveys. All data were entered twice (100 percent verification). The concurrent processing of the data was a distinct advantage for data quality, because the School of Public Health had the opportunity to advise field teams of problems detected during data entry. The data entry and editing phase of the survey was completed in late August 2011.
A total of 2,125 households were selected in the sample, of which 2,120 were actually occupied at the time of the interview. The number of occupied households successfully interviewed was 2,102, yielding a household response rate of 99 percent.
From the households interviewed, 2,629 women were found to be eligible and 2,567 were interviewed, giving a response rate of 98 percent. Interviews with men covered 2,102 of the eligible 2,149 men, yielding a response rate of 98 percent. The response rates do not significantly vary by type of questionnaire or residence.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made to minimize this type of error during the implementation of the Rwanda ESPHS 2011, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the ESPHS 2011 is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the ESPHS 2011 sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the ESPHS 2011 is a SAS program. This program uses the Taylor linearization method for variance estimation for survey estimates that are means or proportions.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey report.